
Operator for MongoDB

Documentation
1.21.1 (October 30, 2025)

Table of Contents

1 Percona Operator for MongoDB
The Percona Operator for MongoDB is a Kubernetes-native application that uses custom resources to manage the lifecycle of Percona Server for MongoDB
clusters. It works as a controller, monitoring the desired database state deDned by you (through YAML Dles) and ensuring your MongoDB deployment matches
that state automatically.

The Operator simpliDes and automates tasks related to MongoDB cluster management such as:

Provisioning and scaling:

Automatically creates MongoDB clusters on Kubernetes.

Dynamically scales your MongoDB instances up or down based on workload requirements.

Upgrade: Manages seamless upgrades of MongoDB versions without downtime or data loss.

Backups and Restores: SimpliDes backing up data to external storage (e.g., AWS S3, Azure) and restoring it when needed.

Self-Healing: Detects and resolves issues such as pod failures, keeping the cluster healthy.

High Availability: Manages replica sets and failover mechanisms to ensure your database remains available.

What’s new in version 1.21.1

https://github.com/percona/percona-server-mongodb-operator

2 Get help from Percona
Our documentation guides are packed with information, but they can’t cover everything you need to know about Percona Operator for MongoDB. They also won’t
cover every scenario you might come across. Don’t be afraid to try things out and ask questions when you get stuck.

2.1 Percona’s Community Forum
Be a part of a space where you can tap into a wealth of knowledge from other database enthusiasts and experts who work with Percona’s software every day.
While our service is entirely free, keep in mind that response times can vary depending on the complexity of the question. You are engaging with people who
genuinely love solving database challenges.

We recommend visiting our Community Forum. It’s an excellent place for discussions, technical insights, and support around Percona database software. If
you’re new and feeling a bit unsure, our FAQ and Guide for New Users ease you in.

If you have thoughts, feedback, or ideas, the community team would like to hear from you at Any ideas on how to make the forum better?. We’re always excited
to connect and improve everyone’s experience.

2.2 Percona experts
Percona experts bring years of experience in tackling tough database performance issues and design challenges.

Talk to a Percona Expert

We understand your challenges when managing complex database environments. That’s why we offer various services to help you simplify your operations and
achieve your goals.

Service Description

24/7 Expert Support Our dedicated team of database experts is available 24/7 to assist you with any database issues. We provide _exible support plans tailored to your
speciDc needs.

Hands-On Database
Management

Our managed services team can take over the day-to-day management of your database infrastructure, freeing up your time to focus on other
priorities.

Expert Consulting Our experienced consultants provide guidance on database topics like architecture design, migration planning, performance optimization, and
security best practices.

Comprehensive Training Our training programs help your team develop skills to manage databases effectively, offering virtual and in-person courses.

We’re here to help you every step of the way. Whether you need a quick Dx or a long-term partnership, we’re ready to provide your expertise and support.

https://forums.percona.com/t/welcome-to-perconas-community-forum/7
https://forums.percona.com/faq
https://forums.percona.com/t/faq-guide-for-new-users/8562
https://forums.percona.com/t/any-ideas-on-how-to-make-the-forum-better/11522

3 Features

3.1 Design overview
The design of the Operator is tighly bound to the Percona Server for MongoDB replica set or sharded cluster. Replica set cluster is brie_y described in the
following diagram.

DB Pod 1 DB Pod 3DB Pod 2

Write Write

Client Application

MongoDB driver

W
rit
e

R
ea
d

R
ea
d

A replica set consists of one primary server and several secondary ones (two in the picture), and the client application accesses the servers via a driver.

In the case of a sharded cluster, each shard is a replica set which contains a subset of data stored in the database, and the mongos query router acts as an entry
point for client applications. You can Dnd out more details about sharding on a dedicated documentation page, and a simpliDed diagram is as follows:

DB Pod 1 DB Pod 3DB Pod 2

R
ea
d

R
ea
d

R
ea
d Write

Write Write

W
rit
e

Client Application

DB Proxy/Router (mongos)

To provide high availability the Operator uses node a`nity to run MongoDB instances on separate worker nodes if possible, and the database cluster is
deployed as a single Replica Set with at least three nodes. If a node fails, the pod with the mongod process is automatically re-created on another node. If the
failed node was hosting the primary server, the replica set initiates elections to select a new primary. If the failed node was running the Operator, Kubernetes will
restart the Operator on another node, so normal operation will not be interrupted.

Client applications should use a mongo+srv URI for the connection. This allows the drivers (4.2 and up) to retrieve the list of replica set members from DNS SRV
entries without having to list hostnames for the dynamically assigned nodes.

The Operator uses security settings which are more secure than the default Percona Server for MongoDB setup. The initial conDguration contains default passwords for all needed user
accounts, which should be changed in the production environment, as stated in the installation instructions.

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

CSI

Percona Server for MongoDB

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A PersistentVolumeClaim (PVC) is used to implement the automatic
storage provisioning to pods. If a failure occurs, the Container Storage Interface (CSI) should be able to re-mount storage on a different node. The PVC
StorageClass must support this feature (Kubernetes and OpenShift support this in versions 1.9 and 3.9 respectively).

The Operator functionality extends the Kubernetes API with PerconaServerMongoDB object, and it is implemented as a golang application. Each
PerconaServerMongoDB object maps to one separate Percona Server for MongoDB setup. The Operator listens to all events on the created objects. When a new
PerconaServerMongoDB object is created, or an existing one undergoes some changes or deletion, the operator automatically creates/changes/deletes all
needed Kubernetes objects with the appropriate settings to provide a properly operating replica set.

Note

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

3.2 Compare various solutions to deploy MongoDB in Kubernetes
There are multiple ways to deploy and manage MongoDB in Kubernetes. Here we will focus on comparing the following open source solutions:

Bitnami Helm chart

KubeDB

MongoDB Community Operator

Percona Operator for MongoDB

Generic
Here is the review of generic features, such as supported MongoDB versions, open source models and more.

Feature/Product Percona Operator for
MongoDB

Bitnami Helm
Chart

KubeDB for MongoDB MongoDB Community
Operator

MongoDB Enterprise
Operator

Open source model Apache 2.0 Apache 2.0 Open core Open core Open core

MongoDB versions MongoDB 5.0, 6.0, 7.0 * MongoDB 5.0 MongoDB 3.4, 3.6. 4.0, 4.1,
4.2

MongoDB 4.2, 4.4, 5.0, 6.0,
7.0

MongoDB 4.2, 4.4, 5.0, 6.0,
7.0

Kubernetes
conformance

Various versions are tested No guarantee No guarantee No guarantee No guarantee

Cluster-wide mode Yes Not an operator Enterprise only Yes Yes

Network exposure Yes Yes No, only through manual
conDg

No Yes

Web-based GUI Percona Everest kubedb-ui Ops Manager

* Percona Operator relies on Percona Server for MongoDB - a free, enhanced, fully compatible MongoDB software alternative for MongoDB Community Server
with enterprise-grade features.

Maintenance
Upgrade and scaling are the two most common maintenance tasks that are executed by database administrators and developers.

Feature/Product Percona Operator for
MongoDB

Bitnami Helm Chart KubeDB for
MongoDB

MongoDB Community
Operator

MongoDB Enterprise
Operator

Operator upgrade Yes Helm upgrade Image change Yes Yes

Database
upgrade

Automated minor, manual
major

No Manual minor Manual minor and major Yes

Compute scaling Horizontal and vertical Horizontal and
vertical

Enterprise only Horizontal only Yes

Storage scaling Yes Manual Enterprise only No Yes

MongoDB topologies
The next comparison is focused on replica sets, arbiters, sharding and other node types.

Feature/Product Percona Operator for
MongoDB

Bitnami Helm
Chart

KubeDB for
MongoDB

MongoDB Community
Operator

MongoDB Enterprise
Operator

Multi-cluster Yes No No No Yes

https://github.com/bitnami/charts/tree/master/bitnami/mongodb
https://github.com/kubedb
https://github.com/mongodb/mongodb-kubernetes-operator
https://github.com/percona/percona-server-mongodb-operator/
https://docs.percona.com/everest/index.html
https://kubedb.com/datasheet/
https://www.mongodb.com/products/self-managed/enterprise-advanced/ops-manager
https://www.percona.com/mongodb/software/percona-server-for-mongodb

deployment

Sharding Yes Yes, another chart Yes No Yes

Arbiter Yes Yes Yes Yes Yes

Non-voting nodes Yes No No No Yes

Hidden nodes No Yes Yes Yes Yes

Network exposure Yes Yes Manual No Yes

Split Horizon Yes No No Yes Yes

Backups
Here are the backup and restore capabilities of each solution.

Feature/Product Percona Operator for
MongoDB

Bitnami Helm
Chart

KubeDB for
MongoDB

MongoDB Community
Operator

MongoDB Enterprise
Operator

Scheduled backups Yes No Enterprise only No Yes

Incremental backups No No Enterprise only No No

Point-in-time
recovery

Yes No No No Yes

Logical backups Yes No No No Yes

Physical backups Yes No No No Yes

Monitoring
Monitoring is crucial for any operations team.

Feature/Product Percona Operator for
MongoDB

Bitnami Helm Chart KubeDB for MongoDB MongoDB Community
Operator

MongoDB Enterprise
Operator

Custom exporters Yes, through sidecars mongodb-exporter as
a sidecar

mongodb-exporter as
a sidecar

Integrate with
prometheus operator

Integrate with
prometheus operator

Percona Monitoring and
Management (PMM)

Yes No No No No

Miscellaneous
Finally, let’s compare various features that are not a good Dt for other categories.

Feature/Product Percona Operator for
MongoDB

Bitnami Helm
Chart

KubeDB for
MongoDB

MongoDB Community
Operator

MongoDB Enterprise
Operator

Customize MongoDB
conDguration

Yes Yes Yes No, only some params No, only some params

Helm Yes Yes Yes, for operator
only

Yes, for operator only Yes, for operator only

SSL/TLS Yes Yes Enterprise only Yes Yes

Create users/roles Yes Yes No Yes Yes

4 Quickstart guides

4.1 Overview
Ready to get started with the Percona Operator for MongoDB? These tutorials help you learn some basic operations, such as:

Install and deploy an Operator

Connect to Percona Server for MongoDB

Insert sample data to the database

Set up and make a logical backup

Monitor the database health with Percona Monitoring and Management (PMM)

Next steps

Install the Operator

4.2 1. Quick install

4.2.1 Install Percona Server for MongoDB using kubectl
A Kubernetes Operator is a special type of controller introduced to simplify complex deployments. The Operator extends the Kubernetes API with custom
resources.

The Percona Operator for MongoDB is based on best practices for conDguration and setup of a Percona Server for MongoDB and Percona Backup for
MongoDB in a Kubernetes-based environment on-premises or in the cloud.

We recommend installing the Operator with the kubectl command line utility. It is the universal way to interact with Kubernetes. Alternatively, you can install it
using the Helm package manager.

Install with kubectl Install with Helm

Prerequisites
To install Percona Distribution for MongoDB, you need the following:

1. The kubectl tool to manage and deploy applications on Kubernetes, included in most Kubernetes distributions. Install not already installed, follow its o`cial
installation instructions .

2. A Kubernetes environment. You can deploy it on Minikube for testing purposes or using any cloud provider of your choice. Check the list of our o`cially
supported platforms.

Set up Minikube

Create and conDgure the GKE cluster

Set up Amazon Elastic Kubernetes Service

Create and conDgure the AKS cluster

Procedure
Here’s a sequence of steps to follow:

See also

Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in Kubernetes by installing the Operator in a custom
namespace. Replace the <namespace> placeholder with your value.

1

$ kubectl create namespace <namespace>

Expected output

namespace/<namespace> was created

Deploy the Operator using the following command:

As the result you will have the Operator Pod up and running.

2

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.21.1/deploy/bundle.yaml -n <namespace>

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com serverside-applied
role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator serverside-applied
deployment.apps/percona-server-mongodb-operator serverside-applied

https://www.percona.com/mongodb/software/percona-server-for-mongodb
https://www.percona.com/mongodb/software/percona-backup-for-mongodb
https://kubernetes.io/docs/tasks/tools/
https://github.com/helm/helm
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/kubernetes/minikube
https://kubernetes.io/docs/reference/using-api/server-side-apply/

You have successfully installed and deployed the Operator with default parameters.

The default Percona Server for MongoDB conDguration includes three mongod, three mongos, and three conDg server instances with enabled sharding.

You can check the rest of the Operator’s parameters in the Custom Resource options reference.

Next steps

Connect to Percona Server for MongoDB

Useful links
Install Percona Server for MongoDB with customized parameters

Deploy Percona Server for MongoDB:3

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/cr.yaml -n
<namespace>

Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

Check the Operator and the Percona Server for MongoDB Pods status.

The creation process may take some time. When the process is over your cluster obtains the ready status.

4

$ kubectl get psmdb -n <namespace>

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

4.2.2 Install Percona Server for MongoDB using Helm
Helm is the package manager for Kubernetes. A Helm chart is a package that contains all the necessary resources to deploy an application to a
Kubernetes cluster.

You can Dnd Percona Helm charts in percona/percona-helm-charts repository in Github.

Prerequisites
To install and deploy the Operator, you need the following:

1. Helm v3 .

2. kubectl command line utility.

3. A Kubernetes environment. You can deploy it locally on Minikube for testing purposes or using any cloud provider of your choice. Check the list of our
o`cially supported platforms.

Set up Minikube

Create and conDgure the GKE cluster

Set up Amazon Elastic Kubernetes Service

Create and conDgure the AKS cluster

Installation
Here’s a sequence of steps to follow:

See also

Add the Percona’s Helm charts repository and make your Helm client up to date with it:1

$ helm repo add percona https://percona.github.io/percona-helm-charts/
$ helm repo update

It is a good practice to isolate workloads in Kubernetes via namespaces. Create a namespace:2

$ kubectl create namespace <namespace>

Install Percona Operator for MongoDB:

The namespace is the name of your namespace. The my-op parameter in the above example is the name of a new release object which is created for
the Operator when you install its Helm chart (use any name you like).

3

$ helm install my-op percona/psmdb-operator --namespace <namespace>

Install Percona Server for MongoDB:

The cluster1 parameter is the name of a new release object which is created for the Percona Server for MongoDB when you install its Helm chart (use
any name you like).

4

$ helm install cluster1 percona/psmdb-db --namespace <namespace>

Check the Operator and the Percona Server for MongoDB Pods status.

The creation process may take some time. When the process is over your cluster obtains the ready status.

5

$ kubectl get psmdb -n <namespace>

https://github.com/helm/helm
https://helm.sh/docs/topics/charts/
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
https://github.com/kubernetes/minikube
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts

You have successfully installed and deployed the Operator with default parameters.

The default Percona Server for MongoDB conDguration includes three mongod, three mongos, and three conDg server instances with enabled sharding.

You can Dnd in the documentation for the charts which Operator and database parameters can be customized during installation. Also, you can check the
rest of the Operator’s parameters in the Custom Resource options reference.

Next steps

Connect to Percona Server for MongoDB

Useful links
Install Percona Server for MongoDB with customized parameters

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name cluster1-mongos.default.svc.cluster.local ready 5m26s

https://github.com/percona/percona-helm-charts/tree/main/charts/psmdb-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/psmdb-db#installing-the-chart

4.3 2. Connect to Percona Server for MongoDB
In this tutorial, you will connect to the Percona Server for MongoDB cluster you deployed previously.

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the credentials of the admin user, which are
stored in the Secrets object.

Here’s how to do it:

List the Secrets objects

The Secrets object we target is named as <cluster_name>-secrets . The <cluster_name> value is the name of your Percona Distribution for MongoDB.
The default variant is:

1

$ kubectl get secrets -n <namespace>

via kubectl

my-cluster-name-secrets

via Helm

cluster1-psmdb-db-secrets

Retrieve the admin user credentials. Replace the secret-name and namespace with your values in the following commands:

Retrieve the login

The default value is databaseAdmin

Retrieve the password

2

→

$ kubectl get secret <secret-name> -n <namespace> -o yaml -o jsonpath='{.data.MONGODB_DATABASE_ADMIN_USER}' | base64 --
decode | tr '\n' ' ' && echo " "

→

$ kubectl get secret <secret-name> -n <namespace> -o yaml -o jsonpath='{.data.MONGODB_DATABASE_ADMIN_PASSWORD}' | base64 -
-decode | tr '\n' ' ' && echo " "

Run a container with a MongoDB client and connect its console output to your terminal. The following command does this, naming the new Pod percona-
client :

3

$ kubectl -n <namespace> run -i --rm --tty percona-client --image=percona/percona-server-mongodb:8.0.12-4 --restart=Never
-- bash -il

Connect to Percona Server for MongoDB. The format of the MongoDB connection URI string is the following:

If you run MongoDB 5.0 and earlier, use the old mongo client instead of mongosh .

The following example connects to the admin database of Percona Server for MongoDB 6.0 sharded cluster with the name my-cluster-name . The cluster runs in the
namespace mongodb-operator :

4

sharding is on

sharding is off

mongosh "mongodb://databaseAdmin:<databaseAdminPassword>@<cluster-name>-mongos.<namespace>.svc.cluster.local/admin?
ssl=false"

mongosh "mongodb://databaseAdmin:<databaseAdminPassword>@<cluster-name>-rs0.<namespace>.svc.cluster.local/admin?
replicaSet=rs0&ssl=false"

Example

mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.mongodb-operator.svc.cluster.local/admin?ssl=false"

Congratulations! You have connected to Percona Server for MongoDB.

Next steps

Insert sample data

4.4 3. Insert sample data
In this tutorial you will learn to insert sample data to Percona Server for MongoDB.

MongoDB provides multiple methods for data insert . We will use a For loop to insert some sample documents.

Now your cluster has some data in it.

Next steps

Make a backup

Run the following command:

If there is no test collection created, MongoDB creates when inserting documents.

1

admin> for (var i = 1; i <= 50; i++) {
 db.test.insertOne({ x : i })
}

Output

{
 acknowledged: true,
 insertedId: ObjectId("652567e5eedca48f97e1868f")
}

Query the collection to verify the data insertion

You will have different _id values.

2

admin> db.test.find()

Output

[
 { _id: ObjectId("652567e4eedca48f97e1865e"), x: 1 },
 { _id: ObjectId("652567e4eedca48f97e1865f"), x: 2 },
 { _id: ObjectId("652567e4eedca48f97e18660"), x: 3 },
 { _id: ObjectId("652567e4eedca48f97e18661"), x: 4 },
 { _id: ObjectId("652567e4eedca48f97e18662"), x: 5 },
 { _id: ObjectId("652567e4eedca48f97e18663"), x: 6 },
 { _id: ObjectId("652567e4eedca48f97e18664"), x: 7 },
 { _id: ObjectId("652567e4eedca48f97e18665"), x: 8 },
 { _id: ObjectId("652567e4eedca48f97e18666"), x: 9 },
 { _id: ObjectId("652567e4eedca48f97e18667"), x: 10 },
 { _id: ObjectId("652567e4eedca48f97e18668"), x: 11 },
 { _id: ObjectId("652567e4eedca48f97e18669"), x: 12 },
 { _id: ObjectId("652567e4eedca48f97e1866a"), x: 13 },
 { _id: ObjectId("652567e4eedca48f97e1866b"), x: 14 },
 { _id: ObjectId("652567e4eedca48f97e1866c"), x: 15 },
 { _id: ObjectId("652567e4eedca48f97e1866d"), x: 16 },
 { _id: ObjectId("652567e4eedca48f97e1866e"), x: 17 },
 { _id: ObjectId("652567e4eedca48f97e1866f"), x: 18 },
 { _id: ObjectId("652567e4eedca48f97e18670"), x: 19 },
 { _id: ObjectId("652567e4eedca48f97e18671"), x: 20 }
]

https://www.mongodb.com/docs/v7.0/reference/insert-methods/

4.5 4. Make a backup
In this tutorial you will learn how to make a logical backup of your data manually. To learn more about backups, see the Backup and restore section.

Considerations and prerequisites
In this tutorial we use the AWS S3 as the backup storage. You need the following S3-related information:

the name of the S3 storage

the name of the S3 bucket

the region - the location of the bucket

the S3 credentials to be used to access the storage.

If you don’t have access to AWS, you can use any S3-compatible storage like MinIO . Also check the list of supported storages.

Also, we will use some Dles from the Operator repository for setting up backups. So, clone the percona-server-mongodb-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

Configure backup storage

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator
$ cd percona-server-mongodb-operator

Note

Encode S3 credentials, substituting AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY with your real values:1

on Linux

on MacOS

$ echo -n 'AWS_ACCESS_KEY_ID' | base64 --wrap=0
$ echo -n 'AWS_SECRET_ACCESS_KEY' | base64 --wrap=0

$ echo -n 'AWS_ACCESS_KEY_ID' | base64
$ echo -n 'AWS_SECRET_ACCESS_KEY' | base64

Edit the deploy/backup-s3.yaml example Secrets conDguration Dle and specify the following:

the metadata.name key is the name which you use to refer your Kubernetes Secret

the base64-encoded S3 credentials

2

→

→

deploy/backup-s3.yaml

apiVersion: v1
kind: Secret
metadata:
 name: my-cluster-name-backup-s3
type: Opaque
data:
 AWS_ACCESS_KEY_ID: <YOUR_AWS_ACCESS_KEY_ID>
 AWS_SECRET_ACCESS_KEY: <YOUR_AWS_SECRET_ACCESS_KEY>

Create the Secrets object from this yaml Dle. Specify your namespace instead of the <namespace> placeholder:3

$ kubectl apply -f deploy/backup-s3.yaml -n <namespace>

Update your deploy/cr.yaml conDguration. Specify the following parameters in the backups section:4

https://aws.amazon.com/s3/
https://min.io/docs/minio/linux/index.html
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup-s3.yaml

Make a logical backup

set the storages.<NAME>.type to s3 . Substitute the <NAME> part with some arbitrary name that you will later use to refer this storage when making
backups and restores.

set the storages.<NAME>.s3.credentialsSecret to the name you used to refer your Kubernetes Secret (my-cluster-name-backup-s3 in the
previous step).

specify the S3 bucket name for the storages.<NAME>.s3.bucket option

specify the region in the storages.<NAME>.s3.region option. Also you can use the storages.<NAME>.s3.prefix option to specify the path (a sub-
folder) to the backups inside the S3 bucket. If preDx is not set, backups are stored in the root directory.

If you use a different S3-compatible storage instead of AWS S3, add the endpointURL key in the s3 subsection, which should point to the actual cloud used for backups. This
value is speciDc to the cloud provider. For example, using Google Cloud involves the following endpointUrl :

→

→

→

→

...
backup:
 ...
 storages:
 s3-us-west:
 type: s3
 s3:
 bucket: "S3-BACKUP-BUCKET-NAME-HERE"
 region: "<AWS_S3_REGION>"
 credentialsSecret: my-cluster-name-backup-s3
 ...

endpointUrl: https://storage.googleapis.com

Apply the conDguration. Specify your namespace instead of the <namespace> placeholder:5

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Before you start, verify the backup conDguration in the deploy/cr.yaml Dle:

the backup.enabled key is set to true

the backup.storages subsection contains the conDgured storage.

1

→

→

To make a backup, you need the conDguration Dle. Edit the sample deploy/backup/backup.yaml conDguration Dle and specify the following:

metadata.name - specify the backup name. You will use this name to restore from this backup

spec.clusterName - specify the name of your cluster. This is the name you speciDed when deploying Percona Server for MongoDB.

spec.storageName - specify the name of your already conDgured storage.

2

→

→

→

deploy/backup/backup.yaml

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBBackup
metadata:
 finalizers:
 - percona.com/delete-backup
 name: backup1
spec:
 clusterName: my-cluster-name
 storageName: s3-us-west
 type: logical

Apply the conDguration. This instructs the Operator to start a backup. Specify your namespace instead of the <namespace> placeholder:3

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/backup.yaml

Troubleshooting
You may face issues with the backup. To identify the issue, you can do the following:

View the information about the backup with the following command:

View the backup-agent logs. Use the previous command to Dnd the name of the pod where the backup was made:

Congratulations! You have made the Drst backup manually. Want to learn more about backups? See the Backup and restore section for how to conDgure point-in-
time recovery, enable server-side encryption and how to automatically make backups according to the schedule.

Next steps

Monitor the database

$ kubectl apply -f deploy/backup/backup.yaml -n <namespace>

Track the backup progress.

``` {.text .no-copy}

NAME CLUSTER STORAGE DESTINATION TYPE SIZE STATUS COMPLETED AGE backup1 my-cluster-name s3-us-west s3://my-bucket/2025-09-
23T10:34:59Z logical 105.44MB ready 43s 43s ```

When the status changes to Ready , backup is made.

4

$ kubectl get psmdb-backup -n <namespace>

Sample output

$ kubectl get psmdb-backup <backup-name> -n <namespace> -o yaml

$ kubectl logs pod/<pod-name> -c backup-agent -n <namespace>



4.6 5. Monitor database with Percona Monitoring and Management
(PMM)
In this section you will learn how to monitor the health of Percona Server for MongoDB with Percona Monitoring and Management (PMM) .

The Operator supports both PMM version 2 and PMM version 3.

It determines which PMM server version you are using based on the authentication method you provide. For PMM 2, the Operator uses API keys for
authentication. For PMM 3, it uses service account tokens.

We recommend using the latest PMM 3.

PMM is a client/server application. It includes the PMM Server  and the number of PMM Clients  running on each node with the database you wish to
monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you connect to the PMM Server to see database metrics on a
number of dashboards.

PMM Server and PMM Client are installed separately.

Considerations
1. If you are using PMM server version 2, use a PMM client image compatible with PMM 2. If you are using PMM server version 3, use a PMM client image

compatible with PMM 3. Check Percona certiDed images for the right one.

2. If you speciDed both authentication methods for PMM server conDguration and they have non-empty values, priority goes to PMM 3.

3. For migration from PMM2 to PMM3, see PMM upgrade documentation . Also check the Automatic migration of API keys  page.

Install PMM Server
You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual appliance, or in Kubernetes. Please refer to the o`cial PMM
documentation  for the installation instructions.

Install PMM Client
PMM Client is installed as a side-car container in the database Pods in your Kubernetes-based environment. To install PMM Client, do the following:

Configure authentication

https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-client/connect-database/mongodb.html
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-server/index.html


Create a secret

Now you must pass the credentials to the Operator. To do so, create a Secret object.

1. Create a Secret conDguration Dle. You can use the deploy/secrets.yaml  secrets Dle.

2. Create the Secrets object using the deploy/secrets.yaml  Dle.

PMM3

PMM3 uses service accounts to control access to PMM server components and resources. To authenticate in PMM server, you need a service account token.
Generate a service account and token . Specify the Admin role for the service account.

When you create a service account token, you can select its lifetime: it can be either a permanent token that never expires or the one with the expiration date. PMM server cannot rotate
service account tokens after they expire. So you must take care of reconDguring PMM Client in this case.

PMM2

Get the PMM API key from PMM Server . The API key must have the role “Admin”. You need this key to authorize PMM Client within PMM Server.

The API key is not rotated automatically when it expires. You must manually recreate it and reconDgure the PMM Client.

Warning

 From PMM UI

Generate the PMM API key 

 From command line

You can query your PMM Server installation for the API Key using curl  and jq  utilities. Replace <login>:<password>@<server_host>  placeholders with your
real PMM Server login, password, and hostname in the following command:

$ PMM_SERVER_API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d '{"name":"operator", "role": "Admin"}' 
"https://<login>:<password>@<server_host>/graph/api/auth/keys" | jq .key)

Warning

PMM 3

Specify the service account token as the PMM_SERVER_TOKEN  value in the secrets Dle:

PMM 2

Specify the API key as the PMM_SERVER_API_KEY  value in the secrets Dle:

apiVersion: v1
kind: Secret
metadata:
  name: my-cluster-name-secrets
type: Opaque
stringData:
  ....
  PMM_SERVER_TOKEN: ""

apiVersion: v1
kind: Secret
metadata:
  name: my-cluster-name-secrets
type: Opaque
stringData:
  ....
  PMM_SERVER_API_KEY: ""

https://github.com/percona/percona-server-mongodb-operator/blob/v1.21.1/deploy/secrets.yaml
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html?h=authe#generate-a-service-account-and-token
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication


Deploy the PMM Client

1. Update the pmm  section in the deploy/cr.yaml  Dle:

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost  option. The PMM Server IP address should be resolvable and reachable
from within your cluster.

Check that the name of the Secret object that you created earlier is speciDed in the secrets.users  Deld.

2. Apply the changes:

3. Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors on the previous steps:

Check the metrics
Let’s see how the collected data is visualized in PMM.

Next steps

What’s next 

$ kubectl apply -f deploy/secrets.yaml -n <namespace>

Expected output

secret/my-cluster-name-secrets created

secrets:
  users: my-cluster-name-secrets
pmm:
  enabled: true
  image: percona/pmm-client:2.44.1
  serverHost: monitoring-service

$ kubectl apply -f deploy/cr.yaml -n <namespace>

$ kubectl get pods -n <namespace>
$ kubectl logs <cluster-name>-rs0-0 -c pmm-client -n <namespace>

Log in to PMM server.1

Click  MongoDB from the left-hand navigation menu. You land on the Instances Overview page.2

Select your cluster from the Clusters drop-down menu and the desired time range on the top of the page. You should see the metrics.3

Click  MongoDB → Other dashboards to see the list of available dashboards that allow you to drill down to the metrics you are interested in.4

https://github.com/percona/percona-server-mongodb-operator/blob/v1.21.1/deploy/cr.yaml


4.7 What’s next?
Congratulations! You have completed all the steps in the Get started guide.

You have the following options to move forward with the Operator:

Deepen your monitoring insights by setting up Kubernetes monitoring with PMM

Control Pods assignment on speciDc Kubernetes Nodes by setting up a`nity / anti-a`nity

Ready to adopt the Operator for production use and need to delete the testing deployment? Use this guide to do it

You can also try operating the Operator and database clusters via the web interface with Percona Everest  - an open-source web-based database
provisioning tool based on Percona Operators. See Get started with Percona Everest  on how to start using it

https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/quickstart-guide/quick-install.html


5 Installation



5.1 System Requirements
The Operator was developed and tested with Percona Server for MongoDB 6.0.25-20, 7.0.24-13, and 8.0.12-4. Other options may also work but have not been
tested. The Operator 1.21.1 also uses Percona Backup for MongoDB 2.11.0.

Officially supported platforms
The following platforms were tested and are o`cially supported by the Operator 1.21.1:

Google Kubernetes Engine (GKE)  1.31-1.33

Amazon Elastic Container Service for Kubernetes (EKS)  1.31-1.34

OpenShift Container Platform  4.16 - 4.19

Azure Kubernetes Service (AKS)  1.31-1.33

Minikube  1.37.0 based on Kubernetes 1.34.0

Other Kubernetes platforms may also work but have not been tested.

Resource Limits
A cluster running an o`cially supported platform contains at least 3 Nodes and the following resources (if sharding is turned off):

2GB of RAM,

2 CPU threads per Node for Pods provisioning,

at least 60GB of available storage for Private Volumes provisioning.

Consider using 4 CPU and 6 GB of RAM if sharding is turned on (the default behavior).

Also, the number of Replica Set Nodes should not be odd if Arbiter is not enabled.

Use Storage Class with XFS as the default Dlesystem if possible to achieve better MongoDB performance .

Installation guidelines
Choose how you wish to install the Operator:

with Helm

with kubectl

on Minikube

on Google Kubernetes Engine (GKE)

on Amazon Elastic Kubernetes Service (AWS EKS)

on Microsoft Azure Kubernetes Service (AKS)

on Openshift

in a Kubernetes-based environment

Note

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://dba.stackexchange.com/questions/190578/is-xfs-still-the-best-choice-for-mongodb


5.2 Install Percona Server for MongoDB on Minikube
Installing the Percona Operator for MongoDB on Minikube  is the easiest way to try it locally without a cloud provider. Minikube runs Kubernetes on GNU/Linux,
Windows, or macOS system using a system-wide hypervisor, such as VirtualBox, KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to test
Kubernetes application locally prior to deploying it on a cloud.

The following steps are needed to run Percona Operator for MongoDB on minikube:

1. Install minikube , using a way recommended for your system. This includes the installation of the following three components:

a. kubectl tool,

b. a hypervisor, if it is not already installed,

c. actual minikube package

After the installation, run minikube start --memory=5120 --cpus=4 --disk-size=30g  (parameters increase the virtual machine limits for the CPU
cores, memory, and disk, to ensure stable work of the Operator). Being executed, this command will download needed virtualized images, then initialize and
run the cluster. After Minikube is successfully started, you can optionally run the Kubernetes dashboard, which visually represents the state of your cluster.
Executing minikube dashboard  will start the dashboard and open it in your default web browser.

2. Deploy the operator using  the following command:

3. Deploy MongoDB cluster with:

This deploys a one-shard MongoDB cluster with one replica set with one node, one mongos node and one conDg server node. The deploy/cr-minimal.yaml  is for minimal non-
production deployment. For more conDguration options please see deploy/cr.yaml  and Custom Resource Options. You can clone the repository with all manifests and source
code by executing the following command:

After editing the needed options, apply your modiDed deploy/cr.yaml  Dle as follows:

The creation process may take some time.

The process is over when both operator and replica set pod have reached their Running status. kubectl get pods  output should look like this:

You can also track the progress via the Kubernetes dashboard:

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.21.1/deploy/bundle.yaml

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/cr-minimal.yaml

Note

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator

$ kubectl apply -f deploy/cr.yaml

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/cr-minimal.yaml
https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/cr.yaml


Workload Status

Running: 1

Deployments

Running: 4

Pods

Running: 1

Replica Sets

Running: 3

Stateful Sets

Deployments

Images Labels Pods

� percona-server-mongodb-operator - 1 / 1 3 minutes ago

Name Created

percona/percona-server-mongodb-operator:1.13.0

Pods

Images Labels Node Restarts CPU Usage (cores) Memory Usage
(bytes)

� minimal-cluster-cfg-0

Show all

minikube Running 0 - - 2 minutes ago

Name Status Created

percona/percona-server-m
ongodb:5.0.11-10

app.kubernetes.io/compon
ent: cfg

app.kubernetes.io/instanc
e: minimal-cluster

app.kubernetes.io/manage
d-by: percona-server-mong
odb-operator

app.kubernetes.io/compon
ent: mongos

Workloads�

Verifying the cluster operation
It may take ten minutes to get the cluster started. When kubectl get pods  command Dnally shows you the cluster is ready, you can try to connect to the
cluster.

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the credentials of the admin user, which are
stored in the Secrets  object.

1. List the Secrets objects

The Secrets object you are interested in has the minimal-cluster-secrets  name by default.

2. View the Secret contents to retrieve the admin user credentials.

The command returns the YAML Dle with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER  and MONGODB_DATABASE_ADMIN_PASSWORD
strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

$ kubectl get secrets -n <namespace>

$ kubectl get secret minimal-cluster-secrets -o yaml

Sample output

...
data:
  ...
  MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
  MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

https://kubernetes.io/docs/concepts/configuration/secret/


3. Run a container with a MongoDB client and connect its console output to your terminal. The following command does this, naming the new Pod percona-
client :

Executing it may require some time to deploy the corresponding Pod.

4. Now run mongosh  tool inside the percona-client  command shell using the admin user credentialds you obtained from the Secret, and a proper
namespace name instead of the <namespace name>  placeholder. The command will look different depending on whether sharding is on (the default
behavior) or off:

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.24-13 --restart=Never -- bash -il

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@minimal-cluster-mongos.<namespace name>.svc.cluster.local/admin?
ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@minimal-cluster-rs0.<namespace name>.svc.cluster.local/admin?
replicaSet=rs0&ssl=false"



5.3 Install Percona Server for MongoDB cluster using Everest
Percona Everest   is an open source cloud-native database platform that helps developers deploy code faster, scale deployments rapidly, and reduce
database administration overhead while regaining control over their data, database conDguration, and DBaaS costs.

It automates day-one and day-two database operations for open source databases on Kubernetes clusters. Percona Everest provides API and Web GUI to launch
databases with just a few clicks and scale them, do routine maintenance tasks, such as software updates, patch management, backups, and monitoring.

You can try it in action by Installing Percona Everest   and managing your Drst cluster  .

https://docs.percona.com/everest/
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/use/cluster-management.html


5.4 Install Percona Server for MongoDB on Google Kubernetes Engine
(GKE)
This guide shows you how to deploy Percona Operator for MongoDB on Google Kubernetes Engine (GKE). The document assumes some experience with the
platform. For more information on the GKE, see the Kubernetes Engine Quickstart .

Prerequisites
All commands from this guide can be run either in the Google Cloud shell or in your local shell.

To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

1. gcloud . This tool is part of the Google Cloud SDK. To install it, select your operating system on the o`cial Google Cloud SDK documentation page  and
then follow the instructions.

2. kubectl . It is the Kubernetes command-line tool you will use to manage and deploy applications. To install the tool, run the following command:

Create and configure the GKE cluster
You can conDgure the settings using the gcloud  tool. You can run it either in the Cloud Shell  or in your local shell (if you have installed Google Cloud SDK
locally on the previous step). The following command will create a cluster named my-cluster-name :

You must edit the following command and other command-line statements to replace the <project ID>  placeholder with your project ID (see available projects with gcloud 
projects list  command). You may also be required to edit the zone location, which is set to us-central1  in the above example. Other parameters specify that we are creating a
cluster with 3 nodes and with machine type of n1-standard-4  with x86_64 vCPUs. If you need ARM64, use a different --machine-type , for example, t2a-standard-4 .

You may wait a few minutes for the cluster to be generated.

Select Kubernetes Engine → Clusters in the left menu panel:

us-central1-amy-cluster-name 3 12 45 GB —
Edit

Connect

Delete

Now you should conDgure the command-line access to your newly created cluster to make kubectl  be able to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above image. You will see the connect statement which conDgures the
command-line access. After you have edited the statement, you may run the command in your local shell:

$ gcloud auth login
$ gcloud components install kubectl

$ gcloud container clusters create my-cluster-name \
  --project <project ID> \
  --zone us-central1-a \
  --cluster-version 1.33 \
  --machine-type n1-standard-4 \
  --num-nodes=3

Note

When the process is over, you can see it listed in the Google Cloud console

$ gcloud container clusters get-credentials my-cluster-name \
  --zone us-central1-a \
  --project <project name>

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart


Finally, use your Cloud Identity and Access Management (Cloud IAM)  to control access to the cluster. The following command will give you the ability to
create Roles and RoleBindings:

Install the Operator and deploy your MongoDB cluster

1. Deploy the Operator. By default deployment will be done in the default  namespace. If that’s not the desired one, you can create a new namespace (replace
the <namespace name>  placeholder with some descriptive name):

and/or set the context for the namespace as follows:

At success, you will see the message that namespace/<namespace name>  was created, and the context ( gke_<project name>_<zone 
location>_<cluster name> ) was modiDed.

Deploy the Operator by applying the deploy/bundle.yaml  manifest from the Operator source tree.

$ kubectl create clusterrolebinding cluster-admin-binding \
  --clusterrole cluster-admin \
  --user $(gcloud config get-value core/account)

Expected output

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

$ kubectl create namespace <namespace name>    

$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace name>

https://cloud.google.com/iam


2. The Operator has been started, and you can deploy your MongoDB cluster:

For x86_64 architecture

You can apply it without downloading, using  the following command:

For ARM64 architecture

Clone the repository with all manifests and source code by executing the following command:

Edit the deploy/bundle.yaml  Dle: add the following a`nity rules to the spec  part of the percona-server-mongodb-operator  Deployment:

After editing, apply  your modiDed deploy/bundle.yaml  Dle as follows:

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.21.1/deploy/bundle.yaml

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com serverside-applied
role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator serverside-applied
deployment.apps/percona-server-mongodb-operator serverside-applied

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: percona-server-mongodb-operator
    spec:
      replicas: 1
      selector:
        matchLabels:
          name: percona-server-mongodb-operator
      template:
        metadata:
          labels:
            name: percona-server-mongodb-operator
        spec:
          affinity:
            nodeAffinity:
              requiredDuringSchedulingIgnoredDuringExecution:
                nodeSelectorTerms:
                  - matchExpressions:
                    - key: kubernetes.io/arch
                      operator: In
                      values:
                        - arm64

$ kubectl apply --server-side -f deploy/bundle.yaml

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com serverside-applied
role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator serverside-applied
deployment.apps/percona-server-mongodb-operator serverside-applied

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/


The creation process may take some time. When the process is over your cluster will obtain the ready  status. You can check it with the following
command:

For x86_64 architecture

This deploys default MongoDB cluster conDguration, three mongod, three mongos, and three conDg server instances. Please see deploy/cr.yaml  and Custom Resource Options
for the conDguration options. You can clone the repository with all manifests and source code by executing the following command:

After editing the needed options, apply your modiDed deploy/cr.yaml  Dle as follows:

For ARM64 architecture

Edit the deploy/cr.yaml  Dle: set the following a`nity rules in all affinity  subsections:

Also, set image  and backup.image  Custom Resource options to special multi-architecture image versions by adding a -multi  su`x to their tags:

Please note, that currently monitoring with PMM is not supported on ARM64 conDgurations.

After editing, apply your modiDed deploy/cr.yaml  Dle as follows:

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/cr.yaml

Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

Note

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator

$ kubectl apply -f deploy/cr.yaml

....
affinity:
  advanced:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: kubernetes.io/arch
            operator: In
            values:
            - arm64

....
image: percona/percona-server-mongodb:7.0.24-13-multi
...
backup:
  ...
  image: percona/percona-backup-mongodb:2.11.0-multi

$ kubectl apply -f deploy/cr.yaml

Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

$ kubectl get psmdb

Expected output

NAME              ENDPOINT                                           STATUS   AGE
my-cluster-name   my-cluster-name-mongos.default.svc.cluster.local   ready    5m26s

https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/cr.yaml


When the creation process is Dnished, it will look as follows:

Name Status Type Namespace Cluster

core API Group

Pod Kind

my-cluster-name-cfg-0 Running Pod default my-cluster-name

my-cluster-name-cfg-1 Running Pod default my-cluster-name

my-cluster-name-cfg-2 Running Pod default my-cluster-name

my-cluster-name-mongos-0 Running Pod default my-cluster-name

my-cluster-name-mongos-1 Running Pod default my-cluster-name

my-cluster-name-mongos-2 Running Pod default my-cluster-name

my-cluster-name-rs0-0 Running Pod default my-cluster-name

my-cluster-name-rs0-1 Running

Running

Pod default my-cluster-name

my-cluster-name-rs0-2 Pod default my-cluster-name

percona-server-mongodb-operator-665cd69f9b-xg5dl Running Pod default my-cluster-name

Verifying the cluster operation
It may take ten minutes to get the cluster started. When kubectl get psmdb  command Dnally shows you the cluster status as ready , you can try to connect to
the cluster.

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the credentials of the admin user, which are
stored in the Secrets  object.

1. List the Secrets objects

The Secrets object you are interested in has the my-cluster-name-secrets  name by default.

2. View the Secret contents to retrieve the admin user credentials.

The command returns the YAML Dle with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER  and MONGODB_DATABASE_ADMIN_PASSWORD
strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

3. Run a container with a MongoDB client and connect its console output to your terminal. The following command does this, naming the new Pod percona-
client :

You can also track the creation process in Google Cloud console via the Object Browser

$ kubectl get secrets -n <namespace>

$ kubectl get secret my-cluster-name-secrets -o yaml

Sample output

...
data:
  ...
  MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
  MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.24-13 --restart=Never -- bash -il

https://kubernetes.io/docs/concepts/configuration/secret/


Executing it may require some time to deploy the corresponding Pod.

4. Now run mongosh  tool inside the percona-client  command shell using the admin user credentialds you obtained from the Secret, and a proper
namespace name instead of the <namespace name>  placeholder. The command will look different depending on whether sharding is on (the default
behavior) or off:

Troubleshooting
If kubectl get psmdb  command doesn’t show ready  status too long, you can check the creation process with the kubectl get pods  command:

If the command output had shown some errors, you can examine the problematic Pod with the kubectl describe <pod name>  command as follows:

Review the detailed information for Warning  statements and then correct the conDguration. An example of a warning is as follows:

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.<namespace name>.svc.cluster.local/admin?
ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace name>.svc.cluster.local/admin?
replicaSet=rs0&ssl=false"

$ kubectl get pods

Expected output

NAME                                               READY   STATUS    RESTARTS   AGE
my-cluster-name-cfg-0                              2/2     Running   0          11m
my-cluster-name-cfg-1                              2/2     Running   1          10m
my-cluster-name-cfg-2                              2/2     Running   1          9m
my-cluster-name-mongos-0                           1/1     Running   0          11m
my-cluster-name-mongos-1                           1/1     Running   0          11m
my-cluster-name-mongos-2                           1/1     Running   0          11m
my-cluster-name-rs0-0                              2/2     Running   0          11m
my-cluster-name-rs0-1                              2/2     Running   0          10m
my-cluster-name-rs0-2                              2/2     Running   0          9m
percona-server-mongodb-operator-665cd69f9b-xg5dl   1/1     Running   0          37m

$ kubectl describe pod my-cluster-name-rs0-2

Warning  FailedScheduling  68s (x4 over 2m22s)  default-scheduler  0/1 nodes are available: 1 node(s) didn’t match pod 
affinity/anti-affinity, 1 node(s) didn’t satisfy existing pods anti-affinity rules.



The errors will look as follows:

Name Status Type Namespace Cluster

core API Group

Pod Kind

my-cluster-name-cfg-0 Running Pod default my-cluster-name

my-cluster-name-cfg-1 Running Pod default my-cluster-name

my-cluster-name-cfg-2 Running Pod default my-cluster-name

my-cluster-name-mongos-0 Running Pod default my-cluster-name

my-cluster-name-mongos-1 Running Pod default my-cluster-name

my-cluster-name-mongos-2 Running Pod default my-cluster-name

my-cluster-name-rs0-0 Running Pod default my-cluster-name

my-cluster-name-rs0-1 Running Pod default my-cluster-name

my-cluster-name-rs0-2 Unschedulable Pod default my-cluster-name

percona-server-mongodb-operator-665cd69f9b-xg5dl Running Pod default my-cluster-name

Clicking the problematic Pod will bring you to the details page with the same warning:

0/3 nodes are available: 3 node(s) didn't match Pod's node affinity/selector. SHOW DETAILS

Removing the GKE cluster
There are several ways that you can delete the cluster.

You can clean up the cluster with the gcloud  command as follows:

The return statement requests your conDrmation of the deletion. Type y  to conDrm.

Just click the Delete  popup menu item in the clusters list:

us-central1-amy-cluster-name 3 12 45 GB —
Edit

Connect

Delete

The cluster deletion may take time.

After deleting the cluster, all data stored in it will be lost!

Alternatively, you can examine your Pods via the object browser

$ gcloud container clusters delete <cluster name> \
  --zone us-central1-a \
  --project <project ID>

Also, you can delete your cluster via the Google Cloud console

Warning



5.5 Install Percona Server for MongoDB on Amazon Elastic Kubernetes
Service (EKS)
This guide shows you how to deploy Percona Operator for MongoDB on Amazon Elastic Kubernetes Service (EKS). The document assumes some experience
with the platform. For more information on the EKS, see the Amazon EKS o`cial documentation .

Prerequisites
The following tools are used in this guide and therefore should be preinstalled:

1. AWS Command Line Interface (AWS CLI) for interacting with the different parts of AWS. You can install it following the o`cial installation instructions for
your system .

2. eksctl to simplify cluster creation on EKS. It can be installed along its installation notes on GitHub .

3. kubectl to manage and deploy applications on Kubernetes. Install it following the o`cial installation instructions .

Also, you need to conDgure AWS CLI with your credentials according to the o`cial guide .

Create the EKS cluster

1. To create your cluster, you will need the following data:

name of your EKS cluster,

AWS region in which you wish to deploy your cluster,

the amount of nodes you would like tho have,

the desired ratio between on-demand  and spot  instances in the total number of nodes.

spot  instances are not recommended for production environment, but may be useful e.g. for testing purposes.

After you have settled all the needed details, create your EKS cluster following the o`cial cluster creation instructions .

2. After you have created the EKS cluster, you also need to install the Amazon EBS CSI driver  on your cluster. See the o`cial documentation  on adding it
as an Amazon EKS add-on.

Install the Operator and deploy your MongoDB cluster

1. Deploy the Operator. By default deployment will be done in the default  namespace. If that’s not the desired one, you can create a new namespace and/or
set the context for the namespace as follows (replace the <namespace name>  placeholder with some descriptive name):

At success, you will see the message that namespace/<namespace name>  was created, and the context was modiDed.

Deploy the Operator by applying the deploy/bundle.yaml  manifest from the Operator source tree.

Note

$ kubectl create namespace <namespace name>
$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace name>

https://aws.amazon.com/eks/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://github.com/weaveworks/eksctl#installation
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html


2. The Operator has been started, and you can deploy your MongoDB cluster:

For x86_64 architecture

You can apply it without downloading, using  the following command:

For ARM64 architecture

Clone the repository with all manifests and source code by executing the following command:

Edit the deploy/bundle.yaml  Dle: add the following a`nity rules to the spec  part of the percona-server-mongodb-operator  Deployment:

After editing, apply  your modiDed deploy/bundle.yaml  Dle as follows:

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.21.1/deploy/bundle.yaml

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com serverside-applied
role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied    
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator serverside-applied
deployment.apps/percona-server-mongodb-operator serverside-applied

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: percona-server-mongodb-operator
    spec:
      replicas: 1
      selector:
        matchLabels:
          name: percona-server-mongodb-operator
      template:
        metadata:
          labels:
            name: percona-server-mongodb-operator
        spec:
          affinity:
            nodeAffinity:
              requiredDuringSchedulingIgnoredDuringExecution:
                nodeSelectorTerms:
                  - matchExpressions:
                    - key: kubernetes.io/arch
                      operator: In
                      values:
                        - arm64

$ kubectl apply --server-side -f deploy/bundle.yaml

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com serverside-applied
role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied    
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator serverside-applied
deployment.apps/percona-server-mongodb-operator serverside-applied

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/


The creation process may take some time. When the process is over your cluster will obtain the ready  status. You can check it with the following
command:

For x86_64 architecture

This deploys default MongoDB cluster conDguration, three mongod, three mongos, and three conDg server instances. Please see deploy/cr.yaml  and Custom Resource Options
for the conDguration options. You can clone the repository with all manifests and source code by executing the following command:

After editing the needed options, apply your modiDed deploy/cr.yaml  Dle as follows:

For ARM64 architecture

Edit the deploy/cr.yaml  Dle: set the following a`nity rules in all affinity  subsections:

Also, set image  and backup.image  Custom Resource options to special multi-architecture image versions by adding a -multi  su`x to their tags:

Please note, that currently monitoring with PMM is not supported on ARM64 conDgurations.

After editing, apply your modiDed deploy/cr.yaml  Dle as follows:

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/cr.yaml

Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

Note

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator

$ kubectl apply -f deploy/cr.yaml

....
affinity:
  advanced:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: kubernetes.io/arch
            operator: In
            values:
            - arm64

...
image: percona/percona-server-mongodb:7.0.24-13-multi
...
backup:
  ...
  image: percona/percona-backup-mongodb:2.11.0-multi

$ kubectl apply -f deploy/cr.yaml

Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

$ kubectl get psmdb

Expected output

NAME              ENDPOINT                                           STATUS   AGE
my-cluster-name   my-cluster-name-mongos.default.svc.cluster.local   ready    5m26s

https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/cr.yaml


Verifying the cluster operation
It may take ten minutes to get the cluster started. When kubectl get psmdb  command Dnally shows you the cluster status as ready , you can try to connect to
the cluster.

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the credentials of the admin user, which are
stored in the Secrets  object.

1. List the Secrets objects

The Secrets object you are interested in has the my-cluster-name-secrets  name by default.

2. View the Secret contents to retrieve the admin user credentials.

The command returns the YAML Dle with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER  and MONGODB_DATABASE_ADMIN_PASSWORD
strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

3. Run a container with a MongoDB client and connect its console output to your terminal. The following command does this, naming the new Pod percona-
client :

Executing it may require some time to deploy the corresponding Pod.

4. Now run mongosh  tool inside the percona-client  command shell using the admin user credentialds you obtained from the Secret, and a proper
namespace name instead of the <namespace name>  placeholder. The command will look different depending on whether sharding is on (the default
behavior) or off:

Troubleshooting
If kubectl get psmdb  command doesn’t show ready  status too long, you can check the creation process with the kubectl get pods  command:

$ kubectl get secrets -n <namespace>

$ kubectl get secret my-cluster-name-secrets -o yaml

Sample output

...
data:
  ...
  MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
  MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.24-13 --restart=Never -- bash -il

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.<namespace name>.svc.cluster.local/admin?
ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace name>.svc.cluster.local/admin?
replicaSet=rs0&ssl=false"

$ kubectl get pods

https://kubernetes.io/docs/concepts/configuration/secret/


If the command output had shown some errors, you can examine the problematic Pod with the kubectl describe <pod name>  command as follows:

Review the detailed information for Warning  statements and then correct the conDguration. An example of a warning is as follows:

Warning  FailedScheduling  68s (x4 over 2m22s)  default-scheduler  0/1 nodes are available: 1 node(s) didn’t match pod 

affinity/anti-affinity, 1 node(s) didn’t satisfy existing pods anti-affinity rules.

Removing the EKS cluster
To delete your cluster, you will need the following data:

name of your EKS cluster,

AWS region in which you have deployed your cluster.

You can clean up the cluster with the eksctl  command as follows (with real names instead of <region>  and <cluster name>  placeholders):

The cluster deletion may take time.

After deleting the cluster, all data stored in it will be lost!

Expected output

NAME                                               READY   STATUS    RESTARTS   AGE
my-cluster-name-cfg-0                              2/2     Running   0          11m
my-cluster-name-cfg-1                              2/2     Running   1          10m
my-cluster-name-cfg-2                              2/2     Running   1          9m
my-cluster-name-mongos-0                           1/1     Running   0          11m
my-cluster-name-mongos-1                           1/1     Running   0          11m
my-cluster-name-mongos-2                           1/1     Running   0          11m
my-cluster-name-rs0-0                              2/2     Running   0          11m
my-cluster-name-rs0-1                              2/2     Running   0          10m
my-cluster-name-rs0-2                              2/2     Running   0          9m
percona-server-mongodb-operator-665cd69f9b-xg5dl   1/1     Running   0          37m

$ kubectl describe pod my-cluster-name-rs0-2

$ eksctl delete cluster --region=<region> --name="<cluster name>"

Warning



5.6 Install Percona Server for MongoDB on Azure Kubernetes Service
(AKS)
This guide shows you how to deploy Percona Operator for MongoDB on Microsoft Azure Kubernetes Service (AKS). The document assumes some experience
with the platform. For more information on the AKS, see the Microsoft AKS o`cial documentation .

Prerequisites
The following tools are used in this guide and therefore should be preinstalled:

1. Azure Command Line Interface (Azure CLI) for interacting with the different parts of AKS. You can install it following the o`cial installation instructions for
your system .

2. kubectl to manage and deploy applications on Kubernetes. Install it following the o`cial installation instructions .

Also, you need to sign in with Azure CLI using your credentials according to the o`cial guide .

Create and configure the AKS cluster
To create your cluster, you will need the following data:

name of your AKS cluster,

an Azure resource group , in which resources of your cluster will be deployed and managed.

the amount of nodes you would like tho have.

You can create your cluster via command line using az aks create  command. The following command will create a 3-node cluster named my-cluster-name
within some already existing  resource group named my-resource-group :

Other parameters in the above example specify that we are creating a cluster with x86_64 machine type of Standard_B4ms  and OS disk size reduced to 30
GiB. If you need ARM64, use different machine type, for example, Standard_D4ps_v5. You can see detailed information about cluster creation options in the AKS
o`cial documentation .

You may wait a few minutes for the cluster to be generated.

Now you should conDgure the command-line access to your newly created cluster to make kubectl  be able to use it.

Install the Operator and deploy your MongoDB cluster

1. Deploy the Operator. By default deployment will be done in the default  namespace. If that’s not the desired one, you can create a new namespace and/or
set the context for the namespace as follows (replace the <namespace name>  placeholder with some descriptive name):

At success, you will see the message that namespace/<namespace name>  was created, and the context ( <cluster name> ) was modiDed.

Deploy the Operator, using  the following command:

$ az aks create --resource-group my-resource-group --name my-cluster-name --enable-managed-identity --node-count 3 --node-vm-
size Standard_B4ms --node-osdisk-size 30 --network-plugin kubenet  --generate-ssh-keys --outbound-type loadbalancer

az aks get-credentials --resource-group my-resource-group --name my-cluster-name

$ kubectl create namespace <namespace name>
$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace name>

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.21.1/deploy/bundle.yaml

https://azure.microsoft.com/en-us/services/kubernetes-service/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group
https://azureprice.net/vm/Standard_B4ms
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/general-purpose/dpsv5-series?tabs=sizebasic
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest
https://kubernetes.io/docs/reference/using-api/server-side-apply/


2. The Operator has been started, and you can deploy your MongoDB cluster:

The creation process may take some time. When the process is over your cluster will obtain the ready  status. You can check it with the following
command:

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com serverside-applied
role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied    
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator serverside-applied
deployment.apps/percona-server-mongodb-operator serverside-applied

For x86_64 architecture

This deploys default MongoDB cluster conDguration, three mongod, three mongos, and three conDg server instances. Please see deploy/cr.yaml  and Custom Resource Options
for the conDguration options. You can clone the repository with all manifests and source code by executing the following command:

After editing the needed options, apply your modiDed deploy/cr.yaml  Dle as follows:

For ARM64 architecture

Clone the repository with all manifests and source code by executing the following command:

Edit the deploy/cr.yaml  conDguration Dle: set image  and backup.image  Custom Resource options to special multi-architecture image versions by
adding a -multi  su`x to their tags:

Please note, that currently monitoring with PMM is not supported on ARM64 conDgurations.

After editing, apply your modiDed deploy/cr.yaml  Dle as follows:

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/cr.yaml

Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

Note

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator

$ kubectl apply -f deploy/cr.yaml

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator

....
image: percona/percona-server-mongodb:7.0.24-13-multi
...
backup:
  ...
  image: percona/percona-backup-mongodb:2.11.0-multi

$ kubectl apply -f deploy/cr.yaml

Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

$ kubectl get psmdb

https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/cr.yaml


Verifying the cluster operation
It may take ten minutes to get the cluster started. When kubectl get psmdb  command Dnally shows you the cluster status as ready , you can try to connect to
the cluster.

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the credentials of the admin user, which are
stored in the Secrets  object.

1. List the Secrets objects

The Secrets object you are interested in has the my-cluster-name-secrets  name by default.

2. View the Secret contents to retrieve the admin user credentials.

The command returns the YAML Dle with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER  and MONGODB_DATABASE_ADMIN_PASSWORD
strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

3. Run a container with a MongoDB client and connect its console output to your terminal. The following command does this, naming the new Pod percona-
client :

Executing it may require some time to deploy the corresponding Pod.

4. Now run mongosh  tool inside the percona-client  command shell using the admin user credentialds you obtained from the Secret, and a proper
namespace name instead of the <namespace name>  placeholder. The command will look different depending on whether sharding is on (the default
behavior) or off:

Troubleshooting

Expected output

NAME              ENDPOINT                                           STATUS   AGE
my-cluster-name   my-cluster-name-mongos.default.svc.cluster.local   ready    5m26s

$ kubectl get secrets -n <namespace>

$ kubectl get secret my-cluster-name-secrets -o yaml

Sample output

...
data:
  ...
  MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
  MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.24-13 --restart=Never -- bash -il

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.<namespace name>.svc.cluster.local/admin?
ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace name>.svc.cluster.local/admin?
replicaSet=rs0&ssl=false"

https://kubernetes.io/docs/concepts/configuration/secret/


If kubectl get psmdb  command doesn’t show ready  status too long, you can check the creation process with the kubectl get pods  command:

If the command output had shown some errors, you can examine the problematic Pod with the kubectl describe <pod name>  command as follows:

Review the detailed information for Warning  statements and then correct the conDguration. An example of a warning is as follows:

Warning  FailedScheduling  68s (x4 over 2m22s)  default-scheduler  0/1 nodes are available: 1 node(s) didn’t match pod 

affinity/anti-affinity, 1 node(s) didn’t satisfy existing pods anti-affinity rules.

Removing the AKS cluster
To delete your cluster, you will need the following data:

name of your AKS cluster,

AWS region in which you have deployed your cluster.

You can clean up the cluster with the az aks delete  command as follows (with real names instead of <resource group>  and <cluster name>
placeholders):

It may take ten minutes to get the cluster actually deleted after executing this command.

After deleting the cluster, all data stored in it will be lost!

$ kubectl get pods

Expected output

NAME                                               READY   STATUS    RESTARTS   AGE
my-cluster-name-cfg-0                              2/2     Running   0          11m
my-cluster-name-cfg-1                              2/2     Running   1          10m
my-cluster-name-cfg-2                              2/2     Running   1          9m
my-cluster-name-mongos-0                           1/1     Running   0          11m
my-cluster-name-mongos-1                           1/1     Running   0          11m
my-cluster-name-mongos-2                           1/1     Running   0          11m
my-cluster-name-rs0-0                              2/2     Running   0          11m
my-cluster-name-rs0-1                              2/2     Running   0          10m
my-cluster-name-rs0-2                              2/2     Running   0          9m
percona-server-mongodb-operator-665cd69f9b-xg5dl   1/1     Running   0          37m

$ kubectl describe pod my-cluster-name-rs0-2

$ az aks delete --name <cluster name> --resource-group <resource group> --yes --no-wait

Warning



5.7 Install Percona server for MongoDB on Kubernetes

1. Clone the percona-server-mongodb-operator repository:

It is crucial to specify the right branch with -b  option while cloning the code on this step. Please be careful.

2. The Custom Resource DeDnition for Percona Server for MongoDB should be created from the deploy/crd.yaml  Dle. The Custom Resource DeDnition
extends the standard set of resources which Kubernetes “knows” about with the new items, in our case these items are the core of the operator. Apply it 
as follows:

This step should be done only once; the step does not need to be repeated with any other Operator deployments.

3. Create a namespace and set the context for the namespace. The resource names must be unique within the namespace and provide a way to divide cluster
resources between users spread across multiple projects.

So, create the namespace and save it in the namespace context for subsequent commands as follows (replace the <namespace name>  placeholder with
some descriptive name):

At success, you will see the message that namespace/<namespace name>  was created, and the context was modiDed.

4. The role-based access control (RBAC) for Percona Server for MongoDB is conDgured with the deploy/rbac.yaml  Dle. Role-based access is based on
deDned roles and the available actions which correspond to each role. The role and actions are deDned for Kubernetes resources in the yaml Dle. Further
details about users and roles can be found in Kubernetes documentation .

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google Kubernetes Engine can grant user needed privileges with the following
command:

5. Start the operator within Kubernetes:

w. Add the MongoDB Users secrets to Kubernetes. These secrets should be placed as plain text in the stringData section of the deploy/secrets.yaml  Dle as
login name and passwords for the user accounts (see Kubernetes documentation  for details).

After editing the yaml Dle, MongoDB Users secrets should be created using the following command:

More details about secrets can be found in Users.

7. Now certiDcates should be generated. By default, the Operator generates certiDcates automatically, and no actions are required at this step. Still, you can
generate and apply your own certiDcates as secrets according to the TLS instructions.

x. After the operator is started, Percona Server for MongoDB cluster can be created with the following command:

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator
$ cd percona-server-mongodb-operator

Note

$ kubectl apply --server-side -f deploy/crd.yaml

$ kubectl create namespace <namespace name>
$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace name>

$ kubectl apply -f deploy/rbac.yaml

Note

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=$(gcloud config get-value core/account)

$ kubectl apply -f deploy/operator.yaml

$ kubectl create -f deploy/secrets.yaml

$ kubectl apply -f deploy/cr.yaml

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/concepts/configuration/secret/


The creation process may take some time. When the process is over your cluster will obtain the ready  status. You can check it with the following
command:

Verifying the cluster operation
It may take ten minutes to get the cluster started. When kubectl get psmdb  command Dnally shows you the cluster status as ready , you can try to connect to
the cluster.

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the credentials of the admin user, which are
stored in the Secrets  object.

1. List the Secrets objects

The Secrets object you are interested in has the my-cluster-name-secrets  name by default.

2. View the Secret contents to retrieve the admin user credentials.

The command returns the YAML Dle with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER  and MONGODB_DATABASE_ADMIN_PASSWORD
strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

3. Run a container with a MongoDB client and connect its console output to your terminal. The following command does this, naming the new Pod percona-
client :

Executing it may require some time to deploy the corresponding Pod.

4. Now run mongosh  tool inside the percona-client  command shell using the admin user credentialds you obtained from the Secret, and a proper
namespace name instead of the <namespace name>  placeholder. The command will look different depending on whether sharding is on (the default
behavior) or off:

$ kubectl get psmdb

Expected output

NAME              ENDPOINT                                           STATUS   AGE
my-cluster-name   my-cluster-name-mongos.default.svc.cluster.local   ready    5m26s

$ kubectl get secrets -n <namespace>

$ kubectl get secret my-cluster-name-secrets -o yaml

Sample output

...
data:
  ...
  MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
  MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.24-13 --restart=Never -- bash -il

https://kubernetes.io/docs/concepts/configuration/secret/


if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.<namespace name>.svc.cluster.local/admin?
ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace name>.svc.cluster.local/admin?
replicaSet=rs0&ssl=false"



5.8 Install Percona Server for MongoDB on OpenShift
Percona Operator for Percona Server for MongoDB is a Red Hat CertiDed Operator . This means that Percona Operator is portable across hybrid clouds and
fully supports the Red Hat OpenShift lifecycle.

Installing Percona Server for MongoDB on OpenShift includes two steps:

Installing the Percona Operator for MongoDB,

Install Percona Server for MongoDB using the Operator.

Install the Operator
You can install Percona Operator for MongoDB on OpenShift using the web interface (the Operator Lifecycle Manager ), or using the command line interface.

Install the Operator via the Operator Lifecycle Manager (OLM)

Operator Lifecycle Manager (OLM) is a part of the Operator Framework  that allows you to install, update, and manage the Operators lifecycle on the OpenShift
platform.

Following steps will allow you to deploy the Operator and Percona Server for MongoDB on your OLM installation:

1. Login to the OLM and click the needed Operator on the OperatorHub page:

Then click “Contiune”, and “Install”.

2. A new page will allow you to choose the Operator version and the Namespace / OpenShift project you would like to install the Operator into.

https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://github.com/operator-framework


Click “Install” button to actually install the Operator.

3. When the installation Dnishes, you can deploy your MongoDB cluster. In the “Operator Details” you will see Provided APIs (Custom Resources, available for
installation). Click “Create instance” for the PerconaServerMongoDB  Custom Resource.

You will be able to edit manifest to set needed Custom Resource options, and then click “Create” button to deploy your database cluster.

Install the Operator via the command-line interface

1. Clone the percona-server-mongodb-operator repository:

It is crucial to specify the right branch with -b  option while cloning the code on this step. Please be careful.

2. The Custom Resource DeDnition for Percona Server for MongoDB should be created from the deploy/crd.yaml  Dle. The Custom Resource DeDnition
extends the standard set of resources which Kubernetes “knows” about with the new items, in our case these items are the core of the operator.

This step should be done only once; it does not need to be repeated with other deployments.

Apply it  as follows:

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator
$ cd percona-server-mongodb-operator

Note

$ oc apply --server-side -f deploy/crd.yaml

https://kubernetes.io/docs/reference/using-api/server-side-apply/


Setting Custom Resource DeDnition requires your user to have cluster-admin role privileges.

If you want to manage Percona Server for MongoDB cluster with a non-privileged user, the necessary permissions can be granted by applying the next
clusterrole:

If you have a cert-manager  installed, then you have to execute two more commands to be able to manage certiDcates with a non-privileged user:

3. Create a new psmdb  project:

4. Add role-based access control (RBAC) for Percona Server for MongoDB is conDgured with the deploy/rbac.yaml  Dle. RBAC is based on clearly deDned
roles and corresponding allowed actions. These actions are allowed on speciDc Kubernetes resources. The details about users and roles can be found in
OpenShift documentation .

5. Start the Operator within OpenShift:

Install Percona Server for MongoDB

1. Add the MongoDB Users secrets to OpenShift. These secrets should be placed as plain text in the stringData section of the deploy/secrets.yaml  Dle as
login name and passwords for the user accounts (see Kubernetes documentation  for details).

After editing the yaml Dle, the secrets should be created with the following command:

More details about secrets can be found in Users.

2. Now certiDcates should be generated. By default, the Operator generates certiDcates automatically, and no actions are required at this step. Still, you can
generate and apply your own certiDcates as secrets according to the TLS instructions.

3. Percona Server for MongoDB cluster can be created at any time with the following steps:

a. Uncomment the deploy/cr.yaml  Deld #platform:  and edit the Deld to platform: openshift . The result should be like this:

b. (optional) In you’re using minishift, please adjust antia`nity policy to none

Note

$ oc create clusterrole psmdb-admin --verb="*" --
resource=perconaservermongodbs.psmdb.percona.com,perconaservermongodbs.psmdb.percona.com/status,perconaservermongodbbackups
.psmdb.percona.com,perconaservermongodbbackups.psmdb.percona.com/status,perconaservermongodbrestores.psmdb.percona.com,perc
onaservermongodbrestores.psmdb.percona.com/status
$ oc adm policy add-cluster-role-to-user psmdb-admin <some-user>

$ oc create clusterrole cert-admin --verb="*" --resource=iissuers.certmanager.k8s.io,certificates.certmanager.k8s.io
$ oc adm policy add-cluster-role-to-user cert-admin <some-user>

$ oc new-project psmdb

$ oc apply -f deploy/rbac.yaml

$ oc apply -f deploy/operator.yaml

$ oc create -f deploy/secrets.yaml

apiVersion: psmdb.percona.com/v1alpha1
kind: PerconaServerMongoDB
metadata:
  name: my-cluster-name
spec:
  platform: openshift
...

   affinity:
     antiAffinityTopologyKey: "none"
...

https://docs.cert-manager.io/en/release-0.8/getting-started/install/openshift.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://kubernetes.io/docs/concepts/configuration/secret/


c. Create/apply the Custom Resource Dle:

The creation process will take time. When the process is over your cluster will obtain the ready  status. You can check it with the following command:

Verifying the cluster operation
It may take ten minutes to get the cluster started. When oc get psmdb  command Dnally shows you the cluster status as ready , you can try to connect to the
cluster.

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the credentials of the admin user, which are
stored in the Secrets  object.

1. List the Secrets objects

The Secrets object you are interested in has the my-cluster-name-secrets  name by default.

2. View the Secret contents to retrieve the admin user credentials.

The command returns the YAML Dle with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER  and MONGODB_DATABASE_ADMIN_PASSWORD
strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

3. Run a container with a MongoDB client and connect its console output to your terminal. The following command does this, naming the new Pod percona-
client :

Executing it may require some time to deploy the corresponding Pod.

4. Now run mongosh  tool inside the percona-client  command shell using the admin user credentialds you obtained from the Secret, and a proper
namespace name instead of the <namespace name>  placeholder. The command will look different depending on whether sharding is on (the default
behavior) or off:

$ oc apply -f deploy/cr.yaml

$ oc get psmdb

Expected output

NAME              ENDPOINT                                           STATUS   AGE
my-cluster-name   my-cluster-name-mongos.default.svc.cluster.local   ready    5m26s

$ oc get secrets -n <namespace>

$ oc get secret my-cluster-name-secrets -o yaml

Sample output

...
data:
  ...
  MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
  MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

$ oc run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.24-13 --restart=Never -- bash -il

https://kubernetes.io/docs/concepts/configuration/secret/


if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.<namespace name>.svc.cluster.local/admin?
ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace name>.svc.cluster.local/admin?
replicaSet=rs0&ssl=false"



6 Upgrade



6.1 Update Percona Operator for MongoDB
You can upgrade Percona Operator for MongoDB to newer versions. The upgrade process consists of these steps:

Upgrade the Operator

Upgrade the database (Percona Server for MongoDB).

Update scenarios
You can either upgrade both the Operator and the database, or you can upgrade only the database. To decide which scenario to choose, read on.

Full upgrade (CRD, Operator, and the database).

When to use this scenario:

The new Operator version has changes that are required for new features of the database to work

The Operator has new features or Dxes that enhance automation and management.

Compatibility improvements between the Operator and the database require synchronized updates.

When going on with this scenario, make sure to test it in a staging or testing environment Drst. Upgrading the Operator may cause performance degradation.

Upgrade only the database

When to use this scenario:

The new version of the database has new features or Dxes that are not related to the Operator or other components of your infrastructure

You have updated the Operator earlier and now want to proceed with the database update.

When choosing this scenario, consider the following:

Check that the current Operator version supports the new database version.

Some features may require an Operator upgrade later for full functionality.

Update strategies
You can chose how you want to update your database cluster when you run an upgrade:

Smart Update is the automated way to update the database cluster. The Operator controls how objects are updated. It restarts Pods in a speciDc order, with
the primary instance updated last to avoid connection issues until the whole cluster is updated to the new settings.

This update method applies during database upgrades and when making changes like updating a ConDgMap, rotating passwords, or changing resource
values. It is the default and recommended way to update.

Rolling Update is initiated manually and controlled by Kubernetes . The StatefulSet controller in Kubernetes deletes a Pod, updates it, waits till it reports the
Ready status and proceeds to the next Pod. The order for Pod update is the same as for Pod termination. However, this order may not be optimal from the
Percona Server for MongoDB point of view.

On Delete strategy requires a user to manually delete a Pod to make Kubernetes StatefulSet controller recreate it with the updated conDguration .

To select an update strategy, set the updateStrategy  key in the Custom Resource manifest to one of the following:

SmartUpdate

RollingUpdate

OnDelete

For a manual update of your database cluster using the RollingUpdate  or OnDelete  strategies, refer to the low-level Kubernetes way of database upgrades
guide.

Update on OpenShift

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies


If you run the Operator on Red Hat Marketplace  or you run Red Hat certiDed Operators on OpenShift , you need to do additional steps during the upgrade.
See Upgrade Percona Server for MongoDB on OpenShift for details.

https://marketplace.redhat.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift


6.2 Upgrade the Operator and CRD
To update the Operator, you need to update the Custom Resource DeDnition (CRD) and the Operator deployment. Also we recommend to update the Kubernetes
database cluster conDguration by updating the Custom Resource and the database components to the latest version. This step ensures that all new features
that come with the Operator release work in your environment.

The upgrade process is similar for all installation methods, including Helm and OLM.

Considerations for Kubernetes Cluster versions and upgrades

1. Before upgrading the Kubernetes cluster, have a disaster recovery plan in place. Ensure that a backup is taken prior to the upgrade, and that point-in-time
recovery is enabled to meet your Recovery Point Objective (RPO).

2. Plan your Kubernetes cluster or Operator upgrades with version compatibility in mind.

The Operator is supported and tested on speciDc Kubernetes versions. Always refer to the Operator’s release notes to verify the supported Kubernetes
platforms.

Note that while the Operator might run on unsupported or untested Kubernetes versions, this is not recommended. Doing so can cause various issues, and
in some cases, the Operator may fail if deprecated API versions have been removed.

3. During a Kubernetes cluster upgrade, you must also upgrade the kubelet . It is advisable to drain the nodes hosting the database Pods during the upgrade
process.

4. During the kubelet  upgrade, nodes transition between Ready  and NotReady  states. Also, in some scenarios, older nodes may be replaced entirely with
new nodes. Ensure that nodes hosting database or proxy pods are functioning correctly and remain in a stable state after the upgrade.

5. Regardless of the upgrade approach, pods will be rescheduled or recycled. Plan your Kubernetes cluster upgrade accordingly to minimize downtime and
service disruption.

Considerations for the Operator upgrades

1. The Operator version has three digits separated by a dot ( . ) in the format major.minor.patch . Here’s how you can understand the version 1.18.0 :

1  - major version

18  - minor version

0  - patch version

You can only upgrade the Operator to the nearest major.minor  version. For example, from 1.18.0  to 1.19.0 . To upgrade to a newer version, which
differs from the current minor.major  version by more than one, you need to make several incremental upgrades sequentially. For example, to upgrade the
Operator from 1.17.0  to 1.19.1 , you need to Drst upgrade it to 1.18.0 , and then to 1.19.1 .

Patch versions don’t in_uence the upgrade, so you can safely move from 1.18.0  to 1.19.1 .

Check the Release notes index for the list of the Operator versions.

2. CRD supports the last 3 minor versions of the Operator. This means it is compatible with the newest Operator version and the two previous minor versions.
If the Operator is older than the CRD by no more than two versions, you should be able to continue using the old Operator version. But updating the CRD and
Operator is the recommended path.

3. Starting from version 1.14.0, the Operator conDgures replica set members using local fully-qualiDed domain names (FQDN). Before this version, if you
exposed a replica set, it used the exposed IP addresses in the replica set conDguration. Therefore, if you upgrade to version 1.14.0 and your replica set is
exposed, the replica set conDguration will change to use FQDN. To prevent such reconDguration, set the clusterServiceDNSMode  Custom Resource option
to External  before the upgrade.

4. Starting with version 1.12.0, the Operator no longer has a separate API version for each release in CRD. Instead, the CRD has the API version v1 . Therefore,
if you installed the CRD when the Operator version was older than 1.12.0, you must update the API version in the CRD manually to run the upgrade. To check
your CRD version, use the following command:

$ kubectl get crd perconaservermongodbs.psmdb.percona.com -o yaml | yq .status.storedVersions

Sample output

- v1-11-0
- v1



If the CRD version is other than v1  or has several entries, run the manual update.

5. Starting from the Operator version 1.15.0, the spec.mongod  section (deprecated since 1.12.0) is Dnally removed from the Custom Resource conDguration. If
you have encryption disabled using the deprecated mongod.security.enableEncryption  option, you need to set encryption as disabled via the custom
conDguration before the upgrade:

w. Starting from the Operator version 1.16.0, MongoDB 4.4 support in the Operator has reached its end-of-life. Make sure that you have a supported MongoDB
version before upgrading the Operator to 1.16.0 (you can use major version upgrade functionality to Dx it.

7. The Operator versions 1.19.0 and 1.19.1 have a recommended MongoDB version set to 7.0 because point-in-time recovery may fail on MongoDB 8.0 if
sharding is enabled and the Operator version is 1.19.x. Therefore, upgrading to Operator 1.19.0/1.19.1 is not recommended for sharded MongoDB 8.0
clusters.

Upgrade manually

The upgrade includes the following steps.

1. For Operators older than v1.12.0: Update the API version in the Custom Resource DeDnition :

2. Update the Custom Resource DeDnition  for the Operator and the Role-based access control. Take the latest versions from the o`cial repository on
GitHub with the following commands:

spec:
  ...
  replsets:
    - name: rs0
      ...
      configuration: |
        security:
          enableEncryption: false
        ...

Manually

Via kubectl patch

$ kubectl proxy &  \
$ curl \
       --header "Content-Type: application/json-patch+json" \
       --request PATCH \
       --data '[{"op": "replace", "path": "/status/storedVersions", "value":["v1"]}]' --url 
"http://localhost:8001/apis/apiextensions.k8s.io/v1/customresourcedefinitions/perconaservermongodbs.psmdb.percona.com/status"

Expected output

{
 {...},
  "status": {
    "storedVersions": [
      "v1"
    ]
  }
}

$ kubectl patch customresourcedefinitions perconaservermongodbs.psmdb.percona.com --subresource='status' --type='merge' -p 
'{"status":{"storedVersions":["v1"]}}'

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com patched

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.21.1/deploy/crd.yaml
$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/rbac.yaml

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/


3. Next, update the Percona Server for MongoDB Operator Deployment in Kubernetes by changing the container image of the Operator Pod to the latest
version. Find the image name for the current Operator release in the list of certiDed images. Then apply a patch  to the Operator Deployment and specify
the image name and version. Use the following command to update the Operator Deployment to the 1.21.1  version:

4. The deployment rollout will be automatically triggered by the applied patch. You can track the rollout process in real time with the kubectl rollout 
status  command with the name of your cluster:

Labels set on the Operator Pod will not be updated during upgrade.

5. Update the Custom Resource version, the database, the backup and PMM Client image names with a newer version tag. This step ensures all new features
and improvements of the latest release work well within your environment.

Find the image names in the list of certiDed images.

We recommend to update the PMM Server before the upgrade of PMM Client. If you haven’t done it yet, exclude PMM Client from the list of images to
update.

Since this is a working cluster, the way to update the Custom Resource is to apply a patch  with the kubectl patch psmdb  command.

For example, to update the cluster with the name my-cluster-name  to the 1.21.1  version, the command is as follows:

Upgrade via Helm

If you have installed the Operator using Helm, you can upgrade the Operator with the helm upgrade  command.

The helm upgrade  command updates only the Operator deployment. The update _ow for the database management system is the same for all installation
methods, whether it was installed via Helm or kubectl .

1. You must have the compatible version of the Custom Resource DeDnition (CRD) in all namespaces that the Operator manages. Starting with version 1.21.0,
you can check it using the following command:

2. Update the Custom Resource DeDnition  for the Operator, taking it from the o`cial repository on Github.

Refer to the compatibility between CRD and the Operator and how you can update the CRD if it is too old. Use the following command and replace the
version to the required one until you are safe to update to the latest CRD version.

$ kubectl patch deployment percona-server-mongodb-operator \
   -p'{"spec":{"template":{"spec":{"containers":[{"name":"percona-server-mongodb-operator","image":"percona/percona-server-
mongodb-operator:1.21.1"}]}}}}'

$ kubectl rollout status deployments percona-server-mongodb-operator

Note

With PMM Client

Without PMM Client

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.21.1",
      "image": "percona/percona-server-mongodb:8.0.12-4",
      "backup": { "image": "percona/percona-backup-mongodb:2.11.0" },
      "pmm": { "image": "percona/pmm-client:2.44.1" },
      "logcollector": { "image": "percona/fluentbit:{{ fluentbitrecommended }}" }
   }}'

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.21.1",
      "image": "percona/percona-server-mongodb:8.0.12-4",
      "backup": { "image": "percona/percona-backup-mongodb:2.11.0" },
      "logcollector": { "image": "percona/fluentbit:{{ fluentbitrecommended }}" }
   }}'

$ kubectl get crd perconaservermongodbs.psmdb.percona.com --show-labels

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/


If you already have the latest CRD version in one of namespaces, don’t re-run intermediate upgrades for it.

3. Upgrade the Operator deployment

The my-op  parameter in the above example is the name of a release object  which you have chosen for the Operator when installing its Helm chart.

During the upgrade, you may see a warning to manually apply the CRD if it has the outdated version. In this case, refer to step 2 to upgrade the CRD and then
step 3 to upgrade the deployment.

Upgrade via Operator Lifecycle Manager (OLM)

If you have installed the Operator on the OpenShift platform using OLM, you can upgrade the Operator within it.

1. List installed Operators for your Namespace to see if there are upgradable items.

/

2. Click the “Upgrade available” link to see upgrade details, then click “Preview InstallPlan” button, and Dnally “Approve” to upgrade the Operator.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.21.1/deploy/crd.yaml

With default parameters

To upgrade the Operator installed with default parameters, use the following command:

With customized parameters

If you installed the Operator with some customized parameters , list these options in the upgrade command.

a. Get the list of used options in YAML format :

b. Pass these options to the upgrade command as follows:

$ helm upgrade my-op percona/psmdb-operator --version 1.21.1

$ helm get values my-op -a > my-values.yaml

$ helm upgrade my-op percona/psmdb-operator --version 1.21.1 -f my-values.yaml

https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://github.com/percona/percona-helm-charts/tree/main/charts/psmdb-operator#installing-the-chart


6.3 Upgrade Percona Server for MongoDB
You can decide how to run the database upgrades:

Automatically - the Operator periodically checks for new versions of the database images and for valid image paths and automatically updates your
deployment with the latest, recommended or a speciDc version of the database and other components included. To do so, the Operator queries a special
Version Service server at scheduled times. If the current version should be upgraded, the Operator updates the Custom Resource to re_ect the new image
paths and sequentially deletes Pods, allowing StatefulSet to redeploy the cluster Pods with the new image.

Manually - you manually update the Custom Resource and specify the desired version of the database. Then, depending on the conDgured update strategy,
either the Operator automatically updates the deployment to this version. Or you manually trigger the upgrade by deleting Pods.

The way to instruct the Operator how it should run the database upgrades is to set the upgradeOptions.apply  Custom Resource option to one of the following:

Never  - the Operator never makes automatic upgrades. You must upgrade the Custom Resource and images manually.

Disabled  - the Operator doesn’t not carry on upgrades automatically. You must upgrade the Custom Resource and images manually.

Recommended  - the Operator automatically updates the database and components to the version _agged as Recommended

Latest  - the Operator automatically updates the database and components to the most recent available version

version  - specify the speciDc database version that you want to update to. The Operator updates the database to it automatically.



6.4 Minor upgrade



6.4.1 Upgrade to a specific version

Assumptions
For the procedures in this tutorial, we assume that you have set up the Smart Update strategy to update the objects in your database cluster.

Read more about the Smart Update strategy and other available ones in the Upgrade strategies section.

Procedure
To upgrade Percona Server for MongoDB to a speciDc version, do the following:

Check the version of the Operator you have in your Kubernetes environment. If you need to update it, refer to the Operator upgrade guide.1

Check the Custom Resource manifest conDguration to be the following:

spec.updateStrategy  option is set to SmartUpdate

spec.upgradeOptions.apply  option is set to Disabled  or Never .

2

→

→

...
spec:
  updateStrategy: SmartUpdate
  upgradeOptions:
    apply: Disabled
    ...

Check the current version of the Custom Resource and what versions of the database and cluster components are compatible with it. Use the following
command:

You can also Dnd this information in the Versions compatibility matrix.

3

$ curl https://check.percona.com/versions/v1/psmdb-operator/1.21.1 |jq -r '.versions[].matrix'

Update the database, the backup and PMM Client image names with a newer version tag. Find the image names in the list of certiDed images.

We recommend to update the PMM Server before the upgrade of PMM Client. If you haven’t done it yet, exclude PMM Client from the list of images to
update.

Starting with version 1.21.0, the Operator supports cluster-level logging. To update to version 1.21.0, exclude the logcollector  from the list of images to
update.

Since this is a working cluster, the way to update the Custom Resource is to apply a patch  with the kubectl patch psmdb  command.

This example command updates the cluster with the name my-cluster-name  to the 1.21.1  version:

4

With PMM Client

Without PMM Client

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.21.1",
      "image": "percona/percona-server-mongodb:8.0.12-4",
      "backup": { "image": "percona/percona-backup-mongodb:2.11.0" },
      "pmm": { "image": "percona/pmm-client:2.44.1" },
      "logcollector": { "image": "percona/fluentbit:{{ fluentbitrecommended }}" }
   }}'

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.21.1",
      "image": "percona/percona-server-mongodb:8.0.12-4",
      "backup": { "image": "percona/percona-backup-mongodb:2.11.0" },
      "logcollector": { "image": "percona/fluentbit:{{ fluentbitrecommended }}" }
   }}'

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/


The update process is successfully Dnished when all Pods have been restarted. If you turned on Percona Server for MongoDB Sharding, the mongos and ConDg
Server nodes must be restarted too to complete the upgrade.

After you applied the patch, the deployment rollout will be triggered automatically. You can track the rollout process in real time using the kubectl 
rollout status  command with the name of your cluster:

5

$ kubectl rollout status sts my-cluster-name-rs0



6.4.2 Automatic minor upgrade to the latest / recommended version

Assumptions
For the procedures in this tutorial, we assume that you have set up the Smart Update strategy to update the objects in your database cluster.

Read more about the Smart Update strategy and other available ones in the Upgrade strategies section.

Procedure
You can conDgure the Operator to automatically upgrade Percona Server for MongoDB to the latest available, the recommended or to a speciDc version of your
choice. Learn more about automatic upgrades.

The steps are the following:

Check the version of the Operator you have in your Kubernetes environment. If you need to update it, refer to the Operator upgrade guide.1

Make sure that spec.updateStrategy  option in the Custom Resource manifest is set to SmartUpdate .2

Set the upgradeOptions.apply  option in the Custom Resource manifest from Disabled  to one of the following values:

Recommended  - automatic upgrade will choose the most recent version of software _agged as Recommended (for clusters created from scratch, the
Percona Server for MongoDB 8.0 version will be selected instead of the Percona Server for MongoDB 7.0 or 6.0 version regardless of the image path;
for already existing clusters, the 8.0 vs. 7.0 vs. 6.0 branch choice will be preserved),

8.0-recommended , 7.0-recommended , 6.0-recommended  - same as above, but preserves speciDc major MongoDB version for newly provisioned
clusters (ex. 8.0 will not be automatically used instead of 7.0),

Latest  - automatic upgrade will choose the most recent version of the software available (for clusters created from scratch, the Percona Server for
MongoDB 8.0 version will be selected instead of the Percona Server for MongoDB 7.0 or 6.0 version regardless of the image path; for already existing
clusters, the 8.0 vs. 7.0 vs. 6.0 branch choice will be preserved),

8.0-latest , 7.0-latest , 6.0-latest  - same as above, but preserves speciDc major MongoDB version for newly provisioned clusters (ex. 8.0 will
not be automatically used instead of 7.0),

version number - specify the desired version explicitly (version numbers are speciDed as 6.0.25-20, 7.0.24-13, etc.). Actual versions can be found in the
list of certiDed images.

MongoDB 5.0 support has reached its end-of-life in the Operator version 1.19.0. Therefore, the 5.0-recommended  or 5.0-latest  values are no longer supported. Users of
existing clusters based on Percona Server for MongoDB 5.0 should explicitly switch to a newer major database version before upgrading the Operator to 1.19.0.

MongoDB 4.4 support has reached its end-of-life in the Operator version 1.16.0. Therefore, the 4.4-recommended  or 4.4-latest  values are no longer supported. Users of
existing clusters based on Percona Server for MongoDB 4.4 should explicitly switch to a newer major database version before upgrading the Operator to 1.16.0.

3

→

→

→

→

→

End of Life versions of MongoDB

→

→

Make sure to set the valid Version Server URL for the versionServiceEndpoint  key. The Operator checks the new software versions in the Version Server.
If the Operator can’t reach the Version Server, the upgrades won’t happen.

4

Percona’s Version Service (default)

You can use the URL of the o`cial Percona’s Version Service (default). Set upgradeOptions.versionServiceEndpoint  to
https://check.percona.com .

Version Service inside your cluster

Alternatively, you can run Version Service inside your cluster. This can be done with the kubectl  command as follows:

$ kubectl run version-service --image=perconalab/version-service --env="SERVE_HTTP=true" --port 11000 --expose

Specify the schedule to check for the new versions in in CRON format for the upgradeOptions.schedule  option.

The following example sets the midnight update checks with the o`cial Percona’s Version Service:

5



You can force an immediate upgrade by changing the schedule to * * * * *  (continuously check and upgrade) and changing it back to another more conservative schedule
when the upgrade is complete.

spec:
  updateStrategy: SmartUpdate
  upgradeOptions:
    apply: Recommended
    versionServiceEndpoint: https://check.percona.com
    schedule: "0 0 * * *"
...

Note

Apply your changes to the Custom Resource:6

$ kubectl apply -f deploy/cr.yaml



6.4.3 Manual upgrades of Percona Server for MongoDB
The default and recommended way to upgrade the database cluster is using the Smart Update strategy. The Operator controls how objects are updated and
restarts the Pods in a proper order during the database upgrade or for other events that require the cluster update. To these events belong ConDgMap updates,
password rotation or changing resource values.

In some cases running an automatic upgrade of Percona Server for MongoDB is not an option. For example, if the database upgrade impacts your application,
you may want to have a full control over the upgrade process.

Running a manual database upgrade allows you to do just that. You can use one of the following upgrade strategies:

Rolling Update, initiated manually and controlled by Kubernetes . Note that the order of Pods restart may not be optimal from the Percona Server for
MongoDB point of view.

On Delete, done by Kubernetes on per-Pod basis  when Pods are manually deleted.

Rolling Update strategy and semi-automatic updates
To run a semi-automatic update of Percona Server for MongoDB, do the following:

Check the version of the Operator you have in your Kubernetes environment. If you need to update it, refer to the Operator upgrade guide.1

Edit the deploy/cr.yaml  Dle and set the updateStrategy  key to RollingUpdate .2

Check the current version of the Custom Resource and what versions of the database and cluster components are compatible with it. Use the following
command:

You can also Dnd this information in the Versions compatibility matrix.

3

$ curl https://check.percona.com/versions/v1/psmdb-operator/1.21.1 |jq -r '.versions[].matrix'

Update the database, the backup and PMM Client image names with a newer version tag. Find the image names in the list of certiDed images.

We recommend to update the PMM Server before the upgrade of PMM Client. If you haven’t done it yet, exclude PMM Client from the list of images to
update.

Starting with version 1.21.0, the Operator supports cluster-level logging. To update to version 1.21.0, exclude the logcollector  from the list of images to
update.

Since this is a working cluster, the way to update the Custom Resource is to apply a patch  with the kubectl patch psmdb  command.

This example command updates the cluster with the name my-cluster-name  to the 1.21.1  version:

4

With PMM Client

Without PMM Client

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.21.1",
      "image": "percona/percona-server-mongodb:8.0.12-4",
      "backup": { "image": "percona/percona-backup-mongodb:2.11.0" },
      "pmm": { "image": "percona/pmm-client:2.44.1" },
      "logcollector": { "image": "percona/fluentbit:{{ fluentbitrecommended }}" }
   }}'

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.21.1",
      "image": "percona/percona-server-mongodb:8.0.12-4",
      "backup": { "image": "percona/percona-backup-mongodb:2.11.0" },
      "logcollector": { "image": "percona/fluentbit:{{ fluentbitrecommended }}" }
   }}'

After you applied the patch, the deployment rollout will be triggered automatically. You can track the rollout process in real time using the kubectl 
rollout status  command with the name of your cluster:

5

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/


Manual upgrade (the On Delete strategy)
To upgrade Percona Server for MongoDB manually, do following:

$ kubectl rollout status sts my-cluster-name-rs0

Check the version of the Operator you have in your Kubernetes environment. If you need to update it, refer to the Operator upgrade guide.1

Edit the deploy/cr.yaml  Dle and set the updateStrategy  key to OnDelete .2

Check the current version of the Custom Resource and what versions of the database and cluster components are compatible with it. Use the following
command:

You can also Dnd this information in the Versions compatibility matrix.

3

$ curl https://check.percona.com/versions/v1/psmdb-operator/1.21.1 |jq -r '.versions[].matrix'

Update the database, the backup and PMM Client image names with a newer version tag. Find the image names in the list of certiDed images.

We recommend to update the PMM Server before the upgrade of PMM Client. If you haven’t done it yet, exclude PMM Client from the list of images to
update.

Starting with version 1.21.0, the Operator supports cluster-level logging. To update to version 1.21.0, exclude the logcollector  from the list of images to
update.

Since this is a working cluster, the way to update the Custom Resource is to apply a patch  with the kubectl patch psmdb  command.

This example command updates the cluster with the name my-cluster-name  to the 1.21.1  version:

4

With PMM Client

Without PMM Client

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.21.1",
      "image": "percona/percona-server-mongodb:8.0.12-4",
      "backup": { "image": "percona/percona-backup-mongodb:2.11.0" },
      "pmm": { "image": "percona/pmm-client:2.44.1" },
      "logcollector": { "image": "percona/fluentbit:{{ fluentbitrecommended }}" }
   }}'

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.21.1",
      "image": "percona/percona-server-mongodb:8.0.12-4",
      "backup": { "image": "percona/percona-backup-mongodb:2.11.0" },
      "logcollector": { "image": "percona/fluentbit:{{ fluentbitrecommended }}" }
   }}'

The Pod with the newer Percona Server for MongoDB image will start after you delete it. Delete targeted Pods manually one by one to make them restart in
the desired order:

5

Delete the Pod using its name with the command like the following one:1

$ kubectl delete pod my-cluster-name-rs0-2

Wait until Pod becomes ready:

The output should be like this:

2

$ kubectl get pod my-cluster-name-rs0-2

NAME                    READY   STATUS    RESTARTS   AGE
my-cluster-name-rs0-2   1/1     Running   0          3m33s

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/


The update process is successfully Dnished when all Pods have been restarted. If you turned on Percona Server for MongoDB Sharding, the mongos and ConDg
Server nodes must be restarted too to complete the upgrade.



6.5 Major version automated upgrades
Major version upgrade is moving from the current major version to the next one. For example, from 6.0.x to 7.0.x.

It is a more complicated task than a minor version upgrade because it might potentially affect how data is stored and how applications interact with the
database (in case of some API changes). Therefore, we recommend to test the major version upgrade on a staging environment Drst.

A major upgrade is supported by the Operator within one major version at a time: for example, from 7.0 to 8.0. To upgrade Percona Server for MongoDB from 6.0
to 8.0, you should Drst upgrade it to 7.0, and then make a separate upgrade from 7.0 to 8.0. The same is true for major version downgrades.

Before the upgrade, make a backup of your data.

Assumptions
For the procedures in this tutorial, we assume that you have set up the Smart Update strategy to update the objects in your database cluster.

Read more about the Smart Update strategy and other available ones in the Upgrade strategies section.

Procedure
1. Check the version of the Operator you have in your Kubernetes environment. If you need to update it, refer to the Operator upgrade guide.

2. Set the upgradeOptions.apply key in the deploy/cr.yaml  Custom Resource manifest to <version>-recommended :

1. Apply the deploy/cr.yaml  Custom Resource manifest to start the major version upgrade.

Feature Compatibility Version

By default, the Operator doesn’t set FeatureCompatibilityVersion (FCV)  to match the new version. This ensures that backwards-incompatible features are not
automatically enabled with the major version upgrade (which the is recommended and safe behavior).

You can turn this backward compatibility off at any moment (after the upgrade or even before it) by setting the upgradeOptions.setFCV _ag in the
deploy/cr.yaml  conDguration Dle to true .

Note that with this setting, the Operator doesn’t yet support major version rollback if the setFeatureCompatibilityVersion  is set. Therefore it is
recommended to stay without enabling this _ag for some time after the major upgrade to ensure that everything works as expected and you won’t have to
downgrade.

You can set the setFCV  _ag to true  simultaneously with the apply  _ag but you must be absolutely sure that the whole procedure is tested on staging
environment and works as expected.

Downgrades
When making downgrades (e.g. changing version from 7.0 to 6.0), make sure to remove incompatible features that are persisted and/or update incompatible
conDguration settings. Compatibility issues between major MongoDB versions can be found in upstream documentation .

Important

spec:
  upgradeOptions:
    apply: 8.0-recommended

https://docs.mongodb.com/manual/reference/command/setFeatureCompatibilityVersion/
https://www.mongodb.com/docs/manual/release-notes/7.0/#std-label-7.0-downgrade-considerations


6.6 Upgrade Database and Operator on OpenShift
Upgrading database and Operator on Red Hat Marketplace  or to upgrade Red Hat certiDed Operators on OpenShift  generally follows the standard upgrade
scenario, but includes a number of special steps speciDc for these platforms.

Upgrading the Operator and CRD

1. First of all you need to manually update initImage  Custom Resource option with the value of an alternative initial Operator installation image. You need
doing this for all database clusters managed by the Operator. Without this step the cluster will go into error state after the Operator upgrade.

a. Find the initial Operator installation image with kubectl get deploy  command:

b. Apply a patch  to update the initImage  option of your cluster Custom Resource with this value taken from containerImage . Supposing that your
cluster name is my-cluster-name , the command should look as follows:

2. Now you can actually update the Operator via the Operator Lifecycle Manager (OLM)  web interface.

Login to your OLM installation and list installed Operators for your Namespace to see if there are upgradable items:

/

Click the “Upgrade available” link to see upgrade details, then click “Preview InstallPlan” button, and Dnally “Approve” to upgrade the Operator.

Upgrading Percona Server for MongoDB

1. Make sure that spec.updateStrategy  option in the Custom Resource is set to SmartUpdate , spec.upgradeOptions.apply  option is set to Never  or
Disabled  (this means that the Operator will not carry on upgrades automatically).

$ kubectl get deploy percona-server-mongodb-operator -o yaml

Expected output

...
"containerImage": "registry.connect.redhat.com/percona/percona-server-mongodb-
operator@sha256:201092cf97c9ceaaaf3b60dd1b24c7c5228d35aab2674345893f4cd4d9bb0e2e",
...

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
    "spec": {
       "initImage":"registry.connect.redhat.com/percona/percona-server-mongodb-
operator@sha256:201092cf97c9ceaaaf3b60dd1b24c7c5228d35aab2674345893f4cd4d9bb0e2e"
    }}'

...
spec:
  updateStrategy: SmartUpdate
  upgradeOptions:
    apply: Disabled
    ...

https://marketplace.redhat.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm


2. Find the new initial Operator installation image name (it had changed during the Operator upgrade) and other image names for the components of your
cluster with the kubectl get deploy  command:

3. Apply a patch  to set the necessary crVersion  value (equal to the Operator version) and update images in your cluster Custom Resource. Supposing that
your cluster name is cluster1 , the command should look as follows:

The above command upgrades various components of the cluster including PMM Client. If you didn’t follow the o`cial recommendation  to upgrade PMM Server before
upgrading PMM Client, you can avoid PMM Client upgrade by removing it from the list of images as follows:

4. The deployment rollout will be automatically triggered by the applied patch.

$ kubectl get deploy percona-server-mongodb-operator -o yaml

Expected output

...
"image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:5d29132a60b89e660ab738d463bcc0707a17be73dc955aa8da9e50bed4d9ad3e",
...
"initImage": "registry.connect.redhat.com/percona/percona-server-mongodb-
operator@sha256:8adc57e9445cfcea1ae02798a8f9d6a4958ac89f0620b9c6fa6cf969545dd23f",
...
"pmm": {
  "enabled": true,
  "image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:165f97cdae2b6def546b0df7f50d88d83c150578bdb9c992953ed866615016f1",
...
"backup": {
  "enabled": true,
  "image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:a73889d61e996bc4fbc6b256a1284b60232565e128a64e4f94b2c424966772eb",
...

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
    "spec": {
       "crVersion":"1.21.1",
       "image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:5d29132a60b89e660ab738d463bcc0707a17be73dc955aa8da9e50bed4d9ad3e",
       "initImage": "registry.connect.redhat.com/percona/percona-server-mongodb-
operator@sha256:8adc57e9445cfcea1ae02798a8f9d6a4958ac89f0620b9c6fa6cf969545dd23f",
       "pmm": {"image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:165f97cdae2b6def546b0df7f50d88d83c150578bdb9c992953ed866615016f1"},
       "backup": {"image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:a73889d61e996bc4fbc6b256a1284b60232565e128a64e4f94b2c424966772eb"}
    }}'

Warning

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
    "spec": {
       "crVersion":"1.21.1",
       "image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:5d29132a60b89e660ab738d463bcc0707a17be73dc955aa8da9e50bed4d9ad3e",
       "initImage": "registry.connect.redhat.com/percona/percona-server-mongodb-
operator@sha256:8adc57e9445cfcea1ae02798a8f9d6a4958ac89f0620b9c6fa6cf969545dd23f",
       "backup": {"image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:a73889d61e996bc4fbc6b256a1284b60232565e128a64e4f94b2c424966772eb"}
    }}'

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html


7 Configuration



7.1 Users
MongoDB user accounts within the cluster can be divided into two different groups:

Application-level users: unprivileged user accounts for applications

System-level users: privileged accounts needed to automate cluster deployment and management tasks, such as MongoDB health checks

These two groups serve different purposes. Read the following sections to learn more.

Application-level (unprivileged) users
The Operator doesn’t create application-level (unprivileged) user accounts by default.

You can create these unprivileged users in the following ways:

Automatically via Custom Resource. This ability is available with the Operator versions 1.17.0 and newer

Manually in Percona Server for MongoDB

Regardless of how you create users, their usernames must be unique.

Create users via Custom Resource

Starting from Operator version 1.17.0, you can create users in Percona Server for MongoDB via the users  subsection in the Custom Resource. This is called
declarative user management.

You can modify the users  section in the deploy/cr.yaml  conDguration Dle either at cluster creation time or adjust it over time.

For every new user in the deploy/cr.yaml  conDguration Dle, specify the following:

A username and the database where the user will be created. The username must be unique for every user

Roles on databases in MongoDB that you want to grant to this user

Here’s the example conDguration:

After you apply the conDguration, the Operator creates a Secret named <cluster-name>-custom-user-secret , generates a password for the user, and sets it
by the key named after the user name.

Generate user passwords manually

If you don’t want the Operator to generate a user password automatically, you can create a Secret resource that contains the user password. Then specify a
reference to this Secret resource in the passwordSecretRef  key. You can Dnd a detailed description of the corresponding options in the Custom Resource
reference.

Here’s how to do it:

1. Create a Secret conDguration Dle:

...
users:
  - name: my-user
    db: admin
    passwordSecretRef: 
      name: my-user-password
      key: password
    roles:
      - name: clusterAdmin
        db: admin
      - name: userAdminAnyDatabase
        db: admin

my-secret.yaml

http://localhost:8001/percona-operator-for-mongodb/print_page.html#operator-operator-users-section


2. Create a Secret object:

3. Reference this Secret in the Custom Resource

4. Apply the conDguration to create users:

The Operator doesn’t generate passwords for users created in the $external  database. You can’t set the passwordSecretRef  for these users either.

Such users are used for authentication via an external authentication source, such as an LDAP server. The user credentials are stored in an external authentication source, and their
usernames are mapped to those in the $external  database during authentication.

The Operator tracks password changes in the Secret object and updates the user password in the database. This applies to manually created users as well: if a
user was created manually in the database before creating the user via Custom Resource, the existing user is updated.

However, manual password updates in the database are not tracked: the Operator doesn’t overwrite changed passwords with the old ones from the users Secret.

Custom MongoDB roles

Custom MongoDB roles  allow providing Dne-grained access control over your MongoDB deployment.

You can deDne custom MongoDB roles declaratively via the roles  subsection in the Custom Resource.

This subsection contains an array of roles, each with:

A deDned custom name ( roles.name )

The database in which you want to store the user-deDned role ( roles.db )

The roles.privileges.actions  list of custom role actions that users granted this role can perform. For a list of accepted values, see Privilege Actions 
in the manual of the corresponding MongoDB version.

Here’s what you can do with actions:

You can grant actions either to the whole cluster (if roles.privileges.resource.cluster  is set to true) or to a speciDc database or collection.

You can inherit privileges from existing roles by adding existing role and database names to the roles.roles  subsection,

You can apply authentication restrictions for your custom role based on IP address ranges for the client and server.

The following example shows how the roles  subsection may look:

apiVersion: v1
kind: Secret
metadata:
  name: my-user-password
type: Opaque
stringData:
  password: mypassword

$ kubectl apply -f my-secret.yaml

deploy/cr.yaml

...
users:
  - name: my-user
    db: admin
    passwordSecretRef: 
      name: my-user-password
      key: password
    roles:
      - name: clusterAdmin
        db: admin
      - name: userAdminAnyDatabase
        db: admin

$ kubectl apply -f deploy/cr.yaml

External database users

https://www.mongodb.com/docs/manual/core/security-user-defined-roles/
https://www.mongodb.com/docs/manual/reference/privilege-actions/#database-management-actions


Find more information about available options and their accepted values in the roles subsection of the Custom Resource reference.

Create users manually

You can create application-level users manually. Run the commands below, substituting the <namespace name>  placeholder with the real namespace of your
database cluster:

roles:
    - role: my-role
      db: admin
      privileges:
        - resource:
            db: ''
            collection: ''
          actions:
            - find
      authenticationRestrictions:
        - clientSource:
            - 127.0.0.1
          serverAddress:
            - 127.0.0.1
      roles:
        - role: read
          db: admin
        - role: readWrite
          db: admin



If sharding is enabled

1. Connect to Percona Server for MongoDB:

2. Start the mongosh  session and create a user:

3. Test the newly created user:

If sharding is disabled

1. Connect to Percona Server for MongoDB:

2. Start the mongosh  session and create a user:

3. Test the newly created user:

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:8.0.12-4 --restart=Never -- bash -il

Sample output

mongodb@percona-client:/$

$ mongosh "mongodb://userAdmin:userAdmin123456@my-cluster-name--mongos.<namespace name>.svc.cluster.local/admin?ssl=false"
rs0:PRIMARY> db.createUser({
    user: "myApp",
    pwd: "myAppPassword",
    roles: [
      { db: "myApp", role: "readWrite" }
    ],
    mechanisms: [
       "SCRAM-SHA-1"
    ]
})

rs0:PRIMARY> use myApp
rs0:PRIMARY> db.test.insert({ x: 1 })
rs0:PRIMARY> db.test.findOne()

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:8.0.12-4 --restart=Never -- bash -il

Sample output

mongodb@percona-client:/$

$ mongosh "mongodb+srv://userAdmin:userAdmin123456@my-cluster-name-rs0.<namespace name>.svc.cluster.local/admin?
replicaSet=rs0&ssl=false"
rs0:PRIMARY> db.createUser({
    user: "myApp",
    pwd: "myAppPassword",
    roles: [
      { db: "myApp", role: "readWrite" }
    ],
    mechanisms: [
       "SCRAM-SHA-1"
    ]
})

rs0:PRIMARY> use myApp
rs0:PRIMARY> db.test.insert({ x: 1 })
rs0:PRIMARY> db.test.findOne()



System users
To automate the deployment and management of cluster components, the Operator requires system-level MongoDB users.

Credentials for these users are stored as a Kubernetes Secrets  object. The Operator requires a Kubernetes Secret before the database cluster is started. It
uses an existing Secret, if it already exists. Otherwise, the Operator creates a new Secret with randomly generated passwords.

The name of the required Secret should be set in the spec.secrets.users  option of the deploy/cr.yaml  conDguration Dle.

Default Secret name: my-cluster-name-secrets

Secret name Feld: spec.secrets.users

Don’t use system users to run applications.

User Purpose Username Secret Key Password Secret Key

Backup/Restore MONGODB_BACKUP_USER MONGODB_BACKUP_PASSWORD

Cluster Admin MONGODB_CLUSTER_ADMIN_USER MONGODB_CLUSTER_ADMIN_PASSWORD

Cluster Monitor MONGODB_CLUSTER_MONITOR_USER MONGODB_CLUSTER_MONITOR_PASSWORD

Database Admin MONGODB_DATABASE_ADMIN_USER MONGODB_DATABASE_ADMIN_PASSWORD

User Admin MONGODB_USER_ADMIN_USER MONGODB_USER_ADMIN_PASSWORD

PMM Server PMM_SERVER_USER PMM_SERVER_TOKEN

System users and MongoDB roles

The following table maps MongoDB roles to system users:

User Purpose MongoDB Roles

Backup/Restore backup , restore , clusterMonitor , readWrite , pbmAnyAction 

Cluster Admin clusterAdmin 

Cluster Monitor clusterMonitor , read (on the local  database) , explainRole 

Database Admin readWriteAnyDatabase , readAnyDatabase , dbAdminAnyDatabase , backup , restore , clusterMonitor 

User Admin userAdminAnyDatabase 

PMM Server See PMM documentation

If you change credentials for the MONGODB_CLUSTER_MONITOR  user, the cluster Pods will go into a restart cycle, and the cluster may not be accessible through
the mongos  service until this cycle Dnishes.

Reproduce system users for migration

In some situations, you may need to reproduce system users in a bare-bones MongoDB. For example, this is a required step in migration scenarios  to move
existing on-premises MongoDB databases to Kubernetes-based MongoDB clusters managed by the Operator. You can use the following example script that
produces a text Dle with mongo shell commands to create the needed system users with appropriate roles:

Warning

https://kubernetes.io/docs/concepts/configuration/secret/
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-backup
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-restore
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-clusterMonitor
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-readWrite
https://docs.percona.com/percona-backup-mongodb/install/configure-authentication.html
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterAdmin
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-clusterMonitor
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-read
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/mongodb.html#create-pmm-account-and-set-permissions
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-readWriteAnyDatabase
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-readAnyDatabase
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-dbAdminAnyDatabase
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-backup
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-restore
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-clusterMonitor
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-userAdminAnyDatabase
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-client/connect-database/mongodb.html
https://www.percona.com/blog/migrating-mongodb-to-kubernetes


YAML object format

The default name of the Secrets object for the system users is my-cluster-name-secrets . You can create your own Secret and reference it in the CR for your
cluster in spec.secrets.users  key.

When you create the Secret object yourself, your YAML Dle should match the following simple format:

The example above matches the default deploy/secrets.yaml  Dle, which includes sample passwords and PMM Server credentials. These are intended only
for development or automated testing. Don’t use them in production.

Update the Secret

When you create the Secrets object, you use the stringData  type and specify all values for each key/value in plain text format. However, the resulting Secrets
object contains passwords stored as base64-encoded strings in the data  type.

To update any Deld, you’ll need to encode the value into base64 format.

Here’s how to do it:

gen_users.sh

clusterAdminPass="clusterAdmin"
userAdminPass="userAdmin"
clusterMonitorPass="clusterMonitor"
backupPass="backup"

# mongo shell
cat <<EOF > user-mongo-shell.txt
use admin
db.createRole({
    "roles" : [],
    "role" : "pbmAnyAction",
    "privileges" : [
        {
            "resource" : { "anyResource" : true },
            "actions" : [ "anyAction" ]
        }
    ]        
})

db.createUser( { user: "clusterMonitor", pwd: "$clusterMonitorPass", roles: [ "clusterMonitor" ] } )
db.createUser( { user: "userAdmin", pwd: "$userAdminPass", roles: [ "userAdminAnyDatabase" ] } )
db.createUser( { user: "clusterAdmin", pwd: "$clusterAdminPass", roles: [ "clusterAdmin" ] } )
db.createUser( { user: "backup", pwd: "$backupPass", roles: [ "readWrite", "backup", "clusterMonitor", "restore", "pbmAnyAction" ] } )
EOF

apiVersion: v1
kind: Secret
metadata:
  name: my-cluster-name-secrets
type: Opaque
stringData:
  MONGODB_BACKUP_USER: backup
  MONGODB_BACKUP_PASSWORD: backup123456
  MONGODB_DATABASE_ADMIN_USER: databaseAdmin
  MONGODB_DATABASE_ADMIN_PASSWORD: databaseAdmin123456
  MONGODB_CLUSTER_ADMIN_USER: clusterAdmin
  MONGODB_CLUSTER_ADMIN_PASSWORD: clusterAdmin123456
  MONGODB_CLUSTER_MONITOR_USER: clusterMonitor
  MONGODB_CLUSTER_MONITOR_PASSWORD: clusterMonitor123456
  MONGODB_USER_ADMIN_USER: userAdmin
  MONGODB_USER_ADMIN_PASSWORD: userAdmin123456
  PMM_SERVER_USER: admin
  #PMM_SERVER_PASSWORD: admin
  #PMM_SERVER_API_KEY: apikey
  PMM_SERVER_TOKEN: token

Run the following command in your local shell to encode the new value. Replace the new_password  with your value:1



Internal Secret and its usage

The Operator creates and updates an additional Secrets object which is named based on the cluster name, like internal-my-cluster-name-users . This
Secrets object is used only by the Operator. Users must not change it.

This object contains secrets with the same passwords as the one speciDed in spec.secrets.users  (e.g., my-cluster-name-secrets ). When the user
updates the my-cluster-name-secrets  Secret, the Operator propagates these changes to the internal internal-my-cluster-name-users  Secrets object.

Password rotation policies and timing

When there is a change in user secrets, the Operator creates the necessary transaction to change passwords. This rotation happens almost instantly (the delay
can be up to a few seconds), and you don’t need to take any action beyond changing the password.

Please don’t change the secrets.users  option in the CR. Make changes inside the secrets object itself.

Development mode
To make development and testing easier, the deploy/secrets.yaml  secrets Dle contains default passwords for MongoDB system users.

These development-mode credentials from deploy/secrets.yaml  are:

Secret Key Secret Value

MONGODB_BACKUP_USER backup

MONGODB_BACKUP_PASSWORD backup123456

MONGODB_DATABASE_ADMIN_USER databaseAdmin

MONGODB_DATABASE_ADMIN_PASSWORD databaseAdmin123456

MONGODB_CLUSTER_ADMIN_USER clusterAdmin

MONGODB_CLUSTER_ADMIN_PASSWORD clusterAdmin123456

MONGODB_CLUSTER_MONITOR_USER clusterMonitor

MONGODB_CLUSTER_MONITOR_PASSWORD clusterMonitor123456

MONGODB_USER_ADMIN_USER userAdmin

Linux

in macOS

echo -n "new_password" | base64 --wrap=0

echo -n "new_password" | base64

Update the Secrets object. For example, the following command updates the Database Admin user’s password to new_password  in the my-cluster-
name-secrets  object can be done with the following command:

2

in Linux

in macOS

$ kubectl patch secret/my-cluster-name-secrets -p '{"data":{"MONGODB_DATABASE_ADMIN_PASSWORD": "'$(echo -n new_password | 
base64 --wrap=0)'"}}'

$ kubectl patch secret/my-cluster-name-secrets -p '{"data":{"MONGODB_DATABASE_ADMIN_PASSWORD": "'$(echo -n new_password | 
base64)'"}}'

Note



MONGODB_USER_ADMIN_PASSWORD userAdmin123456

PMM_SERVER_USER admin

PMM_SERVER_PASSWORD admin

PMM_SERVER_API_KEY apikey

Do not use the default MongoDB users and/or default PMM API key in production!

MongoDB internal authentication key (optional)
Default Secret name: my-cluster-name-mongodb-keyfile

Secret name Feld: spec.secrets.key

By default, the Operator creates a random, 1024-byte key for MongoDB Internal Authentication  if it does not already exist. If you would like to deploy a
different key, create the secret manually before starting the Operator. Example:

Warning

deploy/mongodb-key6le.yaml

apiVersion: v1
kind: Secret
metadata:
  name: my-cluster-name-mongodb-keyfile
type: Opaque
data:
  mongodb-key: <replace-this-value-with-base-64-encoded-text>

https://docs.mongodb.com/manual/core/security-internal-authentication/


7.2 Changing MongoDB options
When you deploy a new Percona Server for MongoDB cluster, the Operator spins it up with the set of defaults that ensure its correct operation. However, your
application may need additional conDguration of MongoDB. You can deDne this conDguration using the mongod.conf  conDguration Dle options. You can
conDgure mongod Pods, mongos Pods and conDg server replica set Pods separately, based on your requirements.
Then you pass these options to MongoDB instances in the cluster in one of the following ways:

Edit the deploy/cr.yaml  Dle

Use a ConDgMap

Use a Secret object

Note that you can’t change options that may break the behavior of the Operator. For example, TLS/SSL options. If you try changing such options, your changes
will be ignored.

Edit the deploy/cr.yaml  file
You can add MongoDB conDguration options to the following keys of the deploy/cr.yaml :

replsets.conDguration

sharding.mongos.conDguration

sharding.conDgsvrReplSet.conDguration

Example

This example shows how to enable rate limit for database proDler and deDne the default verbosity level for system log:

Find the complete list of options in the o`cial manual . Also refer to these pages in Percona Server for MongoDB documentation:

ProDling rate limit 

Percona memory engine 

Data-at-rest encryption 

Log redaction 

Audit logging .

Use a ConfigMap
You can use a ConDgMap  and the cluster restart to reset conDguration options. A ConDgMap allows Kubernetes to pass or update conDguration data inside a
containerized application.

You should give the ConDgMap a speciDc name, which is composed of your cluster name and a speciDc su`x:

my-cluster-name-rs0-mongod  for the Replica Set (mongod) Pods,

my-cluster-name-cfg-mongod  for the ConDg Server Pods,

my-cluster-name-mongos  for the mongos Pods,

spec:
  ...
  replsets:
    - name: rs0
      size: 3
      configuration: |
        operationProfiling:
          mode: slowOp
        systemLog:
          verbosity: 1
      ...

https://docs.percona.com/percona-server-for-mongodb/rate-limit.html
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.percona.com/percona-server-for-mongodb/rate-limit.html
https://docs.percona.com/percona-server-for-mongodb/LATEST/inmemory.html
https://docs.percona.com/percona-server-for-mongodb/data-at-rest-encryption.html
https://docs.percona.com/percona-server-for-mongodb/LATEST/log-redaction.html
https://docs.percona.com/percona-server-for-mongodb/LATEST/audit-logging.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/


To Dnd the cluster name, you can use the following command:

For example, let’s deDne a mongod.conf  conDguration Dle and put there several MongoDB options we used in the previous example:

You can create a ConDgMap from the mongod.conf  Dle with the kubectl create configmap  command. It has the following syntax:

The following example deDnes my-cluster-name-rs0-mongod  as the ConDgMap name and the mongod.conf  Dle as the data source:

To view the created ConDgMap, use the following command:

Do not forget to restart Percona Server for MongoDB to ensure the cluster has updated the conDguration (see details on how to connect in the Install Percona Server for MongoDB on
Kubernetes page).

Use a Secret Object
The Operator can also store conDguration options in Kubernetes Secrets . This can be useful if you need additional protection for some sensitive data.

You should create a Secret object with a speciDc name, composed of your cluster name and a speciDc su`x:

my-cluster-name-rs0-mongod  for the Replica Set Pods,

my-cluster-name-cfg-mongod  for the ConDg Server Pods,

my-cluster-name-mongos  for the mongos Pods,

To Dnd the cluster name, you can use the following command:

ConDguration options should be put inside a speciDc key:

data.mongod  key for Replica Set (mongod) and ConDg Server Pods,

data.mongos  key for mongos Pods.

Actual options should be encoded with Base64 .

For example, let’s deDne a mongod.conf  conDguration Dle and put there several MongoDB options we used in the previous example:

You can get a Base64 encoded string from your options via the command line as follows:

Note

$ kubectl get psmdb

operationProfiling:
  mode: slowOp
systemLog:
  verbosity: 1

$ kubectl create configmap <configmap-name> <resource-type=resource-name>

$ kubectl create configmap my-cluster-name-rs0-mongod --from-file=mongod.conf=mongod.conf

$ kubectl describe configmaps my-cluster-name-rs0-mongod

Note

Note

$ kubectl get psmdb

operationProfiling:
  mode: slowOp
systemLog:
  verbosity: 1

https://kubernetes.io/docs/concepts/configuration/secret/
https://en.wikipedia.org/wiki/Base64


Similarly, you can read the list of options from a Base64 encoded string:

Finally, use a yaml Dle to create the Secret object. For example, you can create a deploy/my-mongod-secret.yaml  Dle with the following contents:

When ready, apply it with the following command:

Do not forget to restart Percona Server for MongoDB to ensure the cluster has updated the conDguration (see details on how to connect in the Install Percona Server for MongoDB on
Kubernetes page).

in Linux

in macOS

$ cat mongod.conf | base64 --wrap=0

$ cat mongod.conf | base64

Note

$ echo "ICAgICAgb3BlcmF0aW9uUHJvZmlsaW5nOgogICAgICAgIG1vZGU6IHNsb3dPc\
AogICAgICBzeXN0ZW1Mb2c6CiAgICAgICAgdmVyYm9zaXR5OiAxCg==" | base64 --decode

apiVersion: v1
kind: Secret
metadata:
  name: my-cluster-name-rs0-mongod
data:
  mongod.conf: "ICAgICAgb3BlcmF0aW9uUHJvZmlsaW5nOgogICAgICAgIG1vZGU6IHNsb3dPc\
   AogICAgICBzeXN0ZW1Mb2c6CiAgICAgICAgdmVyYm9zaXR5OiAxCg=="

$ kubectl create -f deploy/my-mongod-secret.yaml

Note



7.3 Change Percona Backup for MongoDB configuration
The Operator conDgures Percona Backup for MongoDB (PBM) with the set of default parameters that ensure its correct operation. However, you may want to
Dne-tune PBM conDguration to meet your speciDc needs. For example, adjust the node priority for backups  to use a speciDc node. Or conDgure the parallel
download from the storage for a physical restore .

To change PBM conDguration, edit the deploy/cr.yaml  Custom Resource manifest and specify the options in the backup.configuration  subsection.

Examples
This example shows how to adjust the node priority for backups:

This example shows how to conDgure the parallel data download for physical restores:

Apply the manifest to pass your conDguration to the Operator:

Refer to the Custom Resource options for the full list of available options.

spec:
  backup:
    ...
    configuration:
      backupOptions:
        priority:
          "cluster1-rs0-0.cluster1-rs0.psmdb.svc.cluster.local:27017": 2.5
          "cluster1-rs0-1.cluster1-rs0.psmdb.svc.cluster.local:27017": 2.5

spec:
  backup:
    ...
    configuration:
      restoreOptions:
        numDownloadWorkers: 4
        maxDownloadBufferMb: 0
        downloadChunkMb: 32

$ kubectl apply -f deploy/cr.yaml

https://docs.percona.com/percona-backup-mongodb/usage/backup-priority.html
https://docs.percona.com/percona-backup-mongodb/usage/restore-physical.html#parallel-data-download


7.4 Binding Percona Server for MongoDB components to Specific
Kubernetes/OpenShift Nodes
The operator does a good job of automatically assigning new pods to nodes to achieve balanced distribution across the cluster. There are situations when you
must ensure that pods land on speciDc nodes: for example, for the advantage of speed on an SSD-equipped machine, or reduce costs by choosing nodes in the
same availability zone.

The appropriate (sub)sections ( replsets , replsets.arbiter , backup , etc.) of the deploy/cr.yaml  Dle contain the keys which can be used to do assign
pods to nodes.

Node selector
The nodeSelector  contains one or more key-value pairs. If the node is not labeled with each key-value pair from the Pod’s nodeSelector , the Pod will not be
able to land on it.

The following example binds the Pod to any node having a self-explanatory disktype: ssd  label:

Affinity and anti-affinity
A`nity deDnes eligible pods that can be scheduled on the node which already has pods with speciDc labels. Anti-a`nity deDnes pods that are not eligible. This
approach is reduces costs by ensuring several pods with intensive data exchange occupy the same availability zone or even the same node or, on the contrary, to
spread the pods on different nodes or even different availability zones for high availability and balancing purposes.

Percona Operator for MongoDB provides two approaches for doing this:

simple way to set anti-a`nity for Pods, built-in into the Operator,

more advanced approach based on using standard Kubernetes constraints.

Simple approach - use antiAffinityTopologyKey of the Percona Operator for MongoDB

Percona Operator for MongoDB provides an antiAffinityTopologyKey  option, which may have one of the following values:

kubernetes.io/hostname  - Pods will avoid residing within the same host,

topology.kubernetes.io/zone  - Pods will avoid residing within the same zone,

topology.kubernetes.io/region  - Pods will avoid residing within the same region,

none  - no constraints are applied.

The following example forces Percona Server for MongoDB Pods to avoid occupying the same node:

Advanced approach - use standard Kubernetes constraints

The previous method can be used without special knowledge of the Kubernetes way of assigning Pods to speciDc nodes. Still, in some cases, more complex
tuning may be needed. In this case, the advanced  option placed in the deploy/cr.yaml  Dle turns off the effect of the antiAffinityTopologyKey  and allows
the use of the standard Kubernetes a`nity constraints of any complexity:

nodeSelector:
  disktype: ssd

affinity:
  antiAffinityTopologyKey: "kubernetes.io/hostname"

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml


See explanation of the advanced a`nity options in Kubernetes documentation .

Topology Spread Constraints
Topology Spread Constraints allow you to control how Pods are distributed across the cluster based on regions, zones, nodes, and other topology speciDcs. This
can be useful for both high availability and resource e`ciency.

Pod topology spread constraints are controlled by the topologySpreadConstraints  subsection, which can be put into replsets ,
sharding.configsvrReplSet , and sharding.mongos  sections of the deploy/cr.yaml  conDguration Dle as follows:

You can see the explanation of these a`nity options in Kubernetes documentation .

Tolerations
Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is expressed as a key  with and operator , which is either
exists  or equal  (the equal variant requires a corresponding value  for comparison).

Toleration should have a speciDed effect , such as the following:

NoSchedule  - less strict

PreferNoSchedule

affinity:
   advanced:
     podAffinity:
       requiredDuringSchedulingIgnoredDuringExecution:
       - labelSelector:
           matchExpressions:
           - key: security
             operator: In
             values:
             - S1
         topologyKey: failure-domain.beta.kubernetes.io/zone
     podAntiAffinity:
       preferredDuringSchedulingIgnoredDuringExecution:
       - weight: 100
         podAffinityTerm:
           labelSelector:
             matchExpressions:
             - key: security
               operator: In
               values:
               - S2
           topologyKey: kubernetes.io/hostname
     nodeAffinity:
       requiredDuringSchedulingIgnoredDuringExecution:
         nodeSelectorTerms:
         - matchExpressions:
           - key: kubernetes.io/e2e-az-name
             operator: In
             values:
             - e2e-az1
             - e2e-az2
       preferredDuringSchedulingIgnoredDuringExecution:
       - weight: 1
         preference:
           matchExpressions:
           - key: another-node-label-key
             operator: In
             values:
             - another-node-label-value

topologySpreadConstraints:
  - labelSelector:
      matchLabels:
        app.kubernetes.io/name: percona-server-mongodb
    maxSkew: 1
    topologyKey: kubernetes.io/hostname
    whenUnsatisfiable: DoNotSchedule

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/


NoExecute

When a taint with the NoExecute  effect is assigned to a Node, any Pod conDgured to not tolerating this taint is removed from the node. This removal can be
immediate or after the tolerationSeconds  interval. The following example deDnes this effect and the removal interval:

The Kubernetes Taints and Toleratins  contains more examples on this topic.

Priority Classes
Pods may belong to some priority classes. This _exibility allows the scheduler to distinguish more and less important Pods when needed, such as the situation
when a higher priority Pod cannot be scheduled without evicting a lower priority one. This ability can be accomplished by adding one or more PriorityClasses in
your Kubernetes cluster, and specifying the PriorityClassName  in the deploy/cr.yaml  Dle:

See the Kubernetes Pods Priority and Preemption documentation  to Dnd out how to deDne and use priority classes in your cluster.

Pod Disruption Budgets
Creating the Pod Disruption Budget  is the Kubernetes method to limit the number of Pods of an application that can go down simultaneously due to voluntary
disruptions such as the cluster administrator’s actions during a deployment update. Distribution Budgets allow large applications to retain their high availability
during maintenance and other administrative activities. The maxUnavailable  and minAvailable  options in the deploy/cr.yaml  Dle can be used to set these
limits. The recommended variant is the following:

tolerations:
- key: "node.alpha.kubernetes.io/unreachable"
  operator: "Exists"
  effect: "NoExecute"
  tolerationSeconds: 6000

priorityClassName: high-priority

podDisruptionBudget:
   maxUnavailable: 1

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml


7.5 Labels and annotations
Labels and annotations are rather similar but differ in purpose.

Labels are used by Kubernetes to identify and select objects. They enable Dltering and grouping, allowing users to apply selectors for operations like
deployments or scaling.

Annotations are assigning additional non-identifying information that doesn’t affect how Kubernetes processes resources. They store descriptive information like
deployment history, monitoring conDgurations or external integrations.

The following diagram illustrates this difference:

Both Labels and Annotations are assigned to the following objects:

Custom Resource DeDnitions

Custom Resources

Deployments

Services

StatefulSets

PVCs

Pods

ConDgMaps and Secrets

Backup jobs for scheduled backups

When to use labels and annotations
Use Labels when:

The information is used for object selection

The data is used for grouping or Dltering

The information is used by Kubernetes controllers

The data is used for operational purposes

Use Annotations when:

The information is for external tools

The information is used for debugging

The data is used for monitoring conDguration

Labels and annotations used by Percona Operator for MongoDB

Labels

Name Objects Description Example values

app.kubernetes.io/name Services, StatefulSets,
Deployments, etc.

SpeciDes the name of the application for selectors and grouping percona-server-mongodb

app.kubernetes.io/inst

ance

Pods, Services, StatefulSets,
Deployments

IdentiDes a speciDc instance of the application my-cluster-name

graph TD
    A[Custom Resource] --> B[Operator]
    B --> C[Kubernetes resources]
    C --> D[Labels]
    C --> E[Annotations]
    D --> F[Selection]
    D --> G[Grouping]
    E --> H[External tools]
    E --> I[Documentation]



app.kubernetes.io/mana

ged-by

Services, StatefulSets Indicates the controller managing the object percona-server-mongodb-operator

app.kubernetes.io/comp

onent

Pods, Services, StatefulSets SpeciDes the component within the application mongod, mongos, arbiter, external-
service , crd

app.kubernetes.io/part

-of

Services, StatefulSets Indicates the higher-level application the object belongs to percona-server-mongodb

app.kubernetes.io/vers

ion

CustomResourceDeDnition SpeciDes the version of the Percona Server for MongoDB
Operator.

v1.21.1

app.kubernetes.io/repl

set

CustomResourceDeDnition SpeciDes replica set name in Percona Server for MongoDB
Operator.

rs0

percona.com/backup-

ancestor

Custom Resource SpeciDes the name of the backup that was used as a base for the
current backup

my-cluster-name-backup-2025-05-23

percona.com/backup-

type

Custom Resource SpeciDes the type of backup being performed (e.g. cron for
scheduled backups)

cron

percona.com/cluster Custom Resource IdentiDes the MongoDB cluster instance my-cluster-name

rack Pods, Services, Deployments,
StatefulSets

IdentiDes topology or rack awareness, often for scheduling or
a`nity

rack-22

Annotations

Name Associated
resources

Description Example values

iam.amazonaws.com/role Pod, PVC,
Service

Assigns an AWS IAM role to the resource for permissions. role-arn

service.beta.kubernetes.io/aws-load-

balancer-backend-protocol

Service SpeciDes protocol for AWS load balancer backend. http

percona.com/last-applied-tls Services Stores the hash of the last applied TLS conDguration for
the service

percona.com/last-applied-secret Secrets Stores the hash of the last applied user Secret
conDguration

percona.com/configuration-hash Services Used to track and validate conDguration changes in the
MySQL cluster components

percona.com/last-applied-

secret: "hashvalue"

percona.com/last-config-hash Services Stores the hash of the most recent conDguration

percona.com/ssl-hash Pods Stores the hash of the most recent TLS conDguration

percona.com/ssl-internal-hash Pods Stores the hash of the most recent TLS conDguration for
internal communication

percona.com/passwords-updated Secrets Indicates when passwords were last updated in the Secret

Setting labels and annotations in the Custom Resource
You can deDne both Labels and Annotations as key-value  pairs in the metadata section of a YAML manifest for a speciDc resource.

Set labels and annotations for Pods



To specify labels and annotations for Percona Server for MongoDB Pods, use the replsets.<name>.annotations  / replsets.<name>.labels ,
sharding.configsvrReplSet.annotations  / sharding.configsvrReplSet.labels  and sharding.mongos.annotations  / sharding.mongos.labels
options in the deploy/cr.yaml  Custom Resource. The example conDguration for Percona Server for MongoDB database instances looks as follows:

Set labels and annotations for Services

To annotate Services, use the replsets.<name>.expose.annotations  / replsets.<name>.expose.labels ,
sharding.configsvrReplSet.expose.annotations  / sharding.configsvrReplSet.expose.labels  and sharding.mongos.expose.annotations  /
sharding.mongos.expose.labels  options in the deploy/cr.yaml  Custom Resource. The example conDguration for mongos  is:

Querying labels and annotations
To check which labels are attached to a speciDc object, use the additional --show-labels  option of the kubectl get  command.

For example, to see the Operator version associated with a Custom Resource DeDnition, use the following command:

To check annotations associated with an object, use the following command:

For example:

Specifying labels and annotations ignored by the Operator
Sometimes various Kubernetes _avors can add their own annotations to the Services managed by the Operator.

The Operator keeps track of all changes to its objects and can remove annotations that it didn’t create.

If there are no annotations or labels in the Custom Resource expose.*  subsections, the Operator does nothing if a new label or annotation is added to the
Service object.

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDB
spec:
  replsets:
  - name: rs0
    annotations:
      iam.amazonaws.com/role: role-arn
    labels:
      rack: rack-22 
    ...

spec:
  sharding:
    mongos:
      expose:
        annotations:
          service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http
        labels:
          rack: rack-22

$ kubectl get crd perconaservermongodbs.psmdb.percona.com --show-labels

Sample output

NAME                                      CREATED AT             LABELS
perconaservermongodbs.psmdb.percona.com   2025-09-18T08:27:53Z   app.kubernetes.io/component=crd,app.kubernetes.io/name=percona-server-
mongodb,app.kubernetes.io/part-of=percona-server-mongodb-operator,app.kubernetes.io/version=v1.21.1

$ kubectl get <resource> <resource-name> -o jsonpath='{.metadata.annotations}'

$ kubectl get pod my-cluster-name-rs0-0 -o jsonpath='{.metadata.annotations}'



If the Service per Pod mode is not used, the Operator won’t remove any annotations and labels from any Services related to this expose subsection. Though, it is
still possible to add annotations and labels via the Custom Resource in this case. Use the appropriate expose.serviceAnnotations  and
expose.serviceLabels  Delds.

Else, if the Service per Pod mode is active, the Operator removes unknown annotations and labels from Services created by the Operator for Pods.

Yet it is still possible to specify which annotations and labels the Operator should keep. It is useful if a cloud provider adds own labels and annotations. Or you
may have custom automation tools that add own labels or annotations and you need to keep them.

List these labels and annotations in the spec.ignoreAnnotations  or spec.ignoreLabels  Delds of the deploy/cr.yaml , as follows:

The label and annotation values must exactly match the ones deDned for the Service to be kept.

spec:
  ignoreAnnotations:
    - some.custom.cloud.annotation/smth
  ignoreLabels:
    - some.custom.cloud.label/smth
...



7.6 Exposing the cluster
The Operator provides entry points for accessing the database by client applications in several scenarios. In either way the cluster is exposed with regular
Kubernetes Service objects , conDgured by the Operator.

This document describes the usage of Custom Resource manifest options to expose clusters deployed with the Operator.

Using a single entry point in a sharded cluster
If Percona Server for MongoDB sharding mode is turned on (the default behavior), then the database cluster runs special mongos  Pods - query routers, which act
as entry points for client applications:

By default, a ClusterIP type Service is created (this is controlled by sharding.mongos.expose.type). The Service works in a round-robin fashion between all the
mongos  Pods.

The URI looks like this (taking into account the need for a proper password obtained from the Secret, and a proper namespace name instead of the <namespace 
name>  placeholder):

You can get the actual Service endpoints by running the following command:

A ClusterIP Service endpoint is only reachable inside Kubernetes. If you need to connect from the outside, you need to expose the mongos Pods by using the NodePort or Load
Balancer Service types. See the Connecting from outside Kubernetes section below for details.

Accessing replica set Pods
If Percona Server for MongoDB sharding mode mode is turned off, the application needs to connect to all the MongoDB Pods of the replica set:

$ mongosh "mongodb://userAdmin:userAdminPassword@my-cluster-name-mongos.<namespace name>.svc.cluster.local/admin?ssl=false"

$ kubectl get psmdb

Expected output

NAME              ENDPOINT                                             STATUS   AGE
my-cluster-name   my-cluster-name-mongos.default.svc.cluster.local     ready    85m

Warning

https://kubernetes.io/docs/concepts/services-networking/service/


When Kubernetes creates Pods, each Pod has an IP address in the internal virtual network of the cluster. Creating and destroying Pods is a dynamic process,
therefore binding communication between Pods to speciDc IP addresses would cause problems as things change over time as a result of the cluster scaling,
maintenance, etc. Due to this changing environment, you should connect to Percona Server for MongoDB by using Kubernetes internal DNS names in the URI.

By default, a ClusterIP type Service is created (this is controlled by replsets.expose.type). The Service works in a round-robin fashion between all the mongod
Pods of the replica set.

In this case, the URI looks like this (taking into account the need for a proper password obtained from the Secret, and a proper namespace name instead of the
<namespace name>  placeholder):

You can get the actual Service endpoints by running the following command:

A ClusterIP Service endpoint is only reachable inside Kubernetes. If you need to connect from the outside, you need to expose the mongod Pods by using the NodePort or Load
Balancer Service types. See the Connecting from outside Kubernetes section below for details.

Connecting from outside Kubernetes
If connecting to a cluster from outside Kubernetes, you cannot reach the Pods using the Kubernetes internal DNS names. To make the Pods accessible, Percona
Operator for MongoDB can create Kubernetes Services .

set expose.enabled  option to true  to allow exposing the Pods via Services,

set expose.type  option specifying the type of Service to be used:

ClusterIP  - expose the Pod with an internal static IP address. This variant makes the Service reachable only from within the Kubernetes cluster.

NodePort  - expose the Pod on each Kubernetes Node’s IP address at a static port. A ClusterIP Service, to which the Node port will be routed, is
automatically created in this variant. As an advantage, the Service will be reachable from outside the cluster by Node address and port number, however
the address will be bound to a speciDc Kubernetes Node. The expose.externalTrafficPolicy  Custom Resource option available in replsets ,
sharding.configsvrReplSet , and sharding.mongos  subsections of the deploy/cr.yaml  manifest, controlls if the external tra`c will be node-local
( Local , external requests will be dropped if there is no available Pod on the Node) or cluster-wide ( Cluster , requests can be routed to another Node at
the cost of extra latency and not preserving the client IP address).

LoadBalancer  - expose the Pod externally using a cloud provider’s load balancer. Both ClusterIP and NodePort Services are automatically created  in
this variant.

If the NodePort type is used, the URI looks like this:

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace name>.svc.cluster.local/admin?
replicaSet=rs0&ssl=false"

$ kubectl get psmdb

Expected output

NAME              ENDPOINT                                             STATUS   AGE
my-cluster-name   my-cluster-name-rs0.default.svc.cluster.local        ready    2m19s

Warning

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer


mongodb://databaseAdmin:databaseAdminPassword@<node1>:<port1>,<node2>:<port2>,<node3>:<port3>/admin?replicaSet=rs0&ssl=false

All Node addresses should be directly reachable by the application.

Service per Pod
To make all database Pods accessible, Percona Operator for MongoDB can assign a Kubernetes Service  to each Pod. Particularly, the Service per Pod option
allows the application to take care of Cursor tracking instead of relying on a single Service. This solves the problem of CursorNotFound errors when the Service
transparently cycles between the mongos instances while client is still iterating the cursor on some large collection.

This feature can be enabled for both sharded and non-sharded clusters by setting the sharding.mongos.expose.servicePerPod Custom Resource option to true
in the deploy/cr.yaml  Dle.

If this feature is enabled with the expose.type: NodePort , the created Services look like this:

Controlling hostnames in replset configuration
Starting from v1.14, the Operator conDgures replica set members using local fully-qualiDed domain names (FQDN), which are resolvable and available only from
inside the Kubernetes cluster. Exposing the replica set using the options described above will not affect hostname usage in the replica set conDguration.

Before v1.14, the Operator used the exposed IP addresses in the replica set conDguration in the case of the exposed replica set.

It is still possible to restore the old behavior. For example, it may be useful to have the replica set conDgured with external IP addresses for multi-cluster
deployments. The clusterServiceDNSMode  Deld in the Custom Resource controls this Operator behavior. You can set clusterServiceDNSMode  to one of the
following values:

1. Internal : Use local FQDNs (i.e., cluster1-rs0-0.cluster1-rs0.psmdb.svc.cluster.local ) in replica set conDguration even if the replica set is
exposed. This is the default value.

2. ServiceMesh : Use a special FQDN using the Pod name (i.e., cluster1-rs0-0.psmdb.svc.cluster.local ), assuming it’s resolvable and available in all
clusters.

3. External : Use exposed IP in replica set conDguration if replica set is exposed; else, use local FQDN. This copies the behavior of the Operator v1.13.

If backups are enabled in your cluster, you need to restart replset and conDg servers after changing clusterServiceDNSMode . This option changes the
hostnames inside the replset conDguration and running pbm-agents don’t discover the change until they’re restarted. You may have errors in backup-agent
container logs and your backups may not work until you restarted the agents.

Restart can be done manually with the kubectl rollout restart sts
<clusterName>-<replsetName>  command executed for each replica set in the spec.replsets ; also, if sharding enabled, do the same for conDg servers with
kubectl rollout restart sts <clusterName>-cfg . Alternatively, you can simply restart your cluster.

You should be careful with the clusterServiceDNSMode=External  variant. Using IP addresses instead of DNS hostnames is discouraged in MongoDB. IP addresses make
reconDguration and recovery more complicated, and are generally problematic in scenarios where IP addresses change. In particular, if you delete and recreate the cluster with
clusterServiceDNSMode=External  without deleting its volumes (having percona.com/delete-psmdb-pvc  Dnalizer unset), your cluster will crash and there will be no
straightforward way to recover it.

Exposing replica set with split-horizon DNS
Split-horizon DNS  provides each replica set Pod with a set of DNS URIs for external usage. This allows to communicate with replica set Pods both from inside
the Kubernetes cluster and from outside of Kubernetes.

$ kubectl get svc
NAME                       TYPE           CLUSTER-IP      EXTERNAL-IP    PORT(S)                      AGE
my-cluster-name-mongos-0   NodePort       10.38.158.103   <none>         27017:31689/TCP              12s
my-cluster-name-mongos-1   NodePort       10.38.155.250   <none>         27017:31389/TCP              12s
...

Note

Warning

https://kubernetes.io/docs/concepts/services-networking/service/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://en.wikipedia.org/wiki/Split-horizon_DNS


Split-horizon can be conDgured via the replset.splitHorizons  subsection in the Custom Resource options. Set it in the deploy/cr.yaml  conDguration Dle
as follows:

URIs for external usage are speciDed as key-value pairs, where the key is an arbitrary name and the value is the actual URI. The URI may include a port number. If
nothing is set, the default MongoDB port will be used.

Split horizon has following limitations:

connecting with horizon domains is only supported if client connects using TLS certiDcates, and these TLS certiDcates need to be generated manually

duplicating domain names in horizons is not allowed by MongoDB

using IP addresses in horizons is not allowed by MongoDB

horizons should be set for all Pods of a replica set or not set at all

    ...
    replsets:
      - name: rs0
        expose:
          enabled: true
          type: LoadBalancer
        splitHorizons:
          cluster1-rs0-0:
            external: rs0-0.mycluster.xyz
            external-2: rs0-0.mycluster2.xyz
          cluster1-rs0-1:
            external: rs0-1.mycluster.xyz
            external-2: rs0-1.mycluster2.xyz
          cluster1-rs0-2:
            external: rs0-2.mycluster.xyz
            external-2: rs0-2.mycluster2.xyz



7.7 Local Storage support for the Percona Operator for MongoDB
Among the wide rage of volume types, supported by Kubernetes, there are two volume types which allow Pod containers to access part of the local Dlesystem on
the node the emptyDir and hostPath.

emptyDir
A Pod emptyDir volume  is created when the Pod is assigned to a Node. The volume is initially empty and is erased when the Pod is removed from the Node.
The containers in the Pod can read and write the Dles in the emptyDir volume.

The emptyDir  options in the deploy/cr.yaml  Dle can be used to turn the emptyDir volume on by setting the directory name.

The emptyDir  is useful when you use Percona Memory Engine .

hostPath
A hostPath volume  mounts an existing Dle or directory from the host node’s Dlesystem into the Pod. If the pod is removed, the data persists in the host node’s
Dlesystem.

The volumeSpec.hostPath  subsection in the deploy/cr.yaml  Dle may include path  and type  keys to set the node’s Dlesystem object path and to specify
whether it is a Dle, a directory, or something else (e.g. a socket):

Please note, you must created the hostPath manually and should have following attributes:

access permissions,

ownership,

SELinux security context.

The hostPath  volume is useful when you perform manual actions during the Drst run and require improved disk performance. Consider using the tolerations
settings to avoid a cluster migration to different hardware in case of a reboot or a hardware failure.

More details can be found in the o`cial hostPath Kubernetes documentation .

volumeSpec:
  hostPath:
    path: /data
    type: Directory

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/inmemory.html
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath


7.8 Replica set members and their usage
Percona Server for MongoDB replica set is a number of mongod  instances working together to ensure data durability and system resilience. Such conDguration
enhances fault tolerance and keeps your database accessible even during failures.

A replica set consists of one primary node and several secondary nodes. The primary node accepts all write operations, while secondary nodes replicate the
data set to maintain redundancy. Secondary nodes can serve read queries, which helps distribute the read load. Secondary nodes can also have additional
conDguration, like be non-voting or hidden.

Percona Server for MongoDB replication mechanism is based on elections, when replica set nodes choose which node  becomes the primary. For elections to
be successful, the number fo voting members must be odd.

By default, the Operator creates Percona Server for MongoDB replica set with three members, one primary and the remaining secondaries. This is the minimal
recommended conDguration. A replica set can have up to 50 members with the maximum of 7 voting members.

Replica set member types
Besides the primary and regular secondaries in a MongoDB replica set, you can have special member conDgurations like hidden, arbiter, and non-voting
members.

Arbiter: An arbiter node participates in elections but does not store data. You may want to add arbiter nodes if cost constraints prevent you from adding
another secondary node.

Non-voting: This type of node stores a full copy of the data but does not participate in elections. This is useful for scaling read capacity beyond the seven-
member voting limit of a replica set.

Hidden: A hidden node is a secondary member that holds data but is invisible to client applications. It is added as a voting member and can participate in
elections. It is useful for tasks like backups or running batch jobs that might otherwise interfere with primary operations.

Arbiter nodes

An Arbiter node participates in the replica set elections but does not store any data. Its primary role is to act as a tiebreaker in a replica set with an even number
of data-bearing nodes, ensuring that a primary can always be elected. By not storing data, Arbiter nodes require minimal resources, which can help reduce your
overall costs. An does not demand a persistent volume.

To add an Arbiter node, you can update your deploy/cr.yaml  Dle by adding an arbiter  section under replsets  and setting the enabled  and size  options
to your desired values.

The following example conDguration will create a cluster with 4 data instances and 1 Arbiter:

Find the description of other available options in the replsets.arbiter section of the Custom Resource options reference.

Prevent Arbiter nodes on the same Kubernetes hosts with data-bearing replica set members

By default, Arbiter nodes are allowed to run on the same Kubernetes hosts as your data nodes. This may be reasonable in terms of the number of Kubernetes
Nodes required for the cluster. But as a result it increases possibility to have 50/50 votes division in case of network partitioning. To prevent this, you can apply
an anti-a`nity constraint, which forces arbiter nodes to be scheduled on separate nodes:

....
replsets:
  ....
  size: 4
  ....
  arbiter:
    enabled: true
    size: 1
    ....

https://docs.mongodb.com/manual/core/replica-set-elections/#replica-set-elections


Non-voting nodes
A non-voting node is a secondary member that stores a full copy of the data but does not participate in elections for the primary node. Non-voting nodes enable
you to deploy a replica set with more than seven data-bearing nodes. You can also add a non-voting node to a remote location where network latency might
make it unsuitable for voting.

You can add non-voting nodes by setting the replsets.nonvoting.enabled  and replsets.nonvoting.size  options in your deploy/cr.yaml  Dle.

In this example, the Operator will create a cluster with 3 data instances and 1 non-voting instance:

Find the description of other available options in the replsets.nonvoting section of the Custom Resource options reference.

Note that you can add a non-voting node in the edge location through the externalNodes  option. Please see cross-site replication documentation for details.

Hidden nodes
Hidden nodes are secondary members that hold a full copy of the data but are not visible to client applications. Hidden nodes always have a 0 priority and
therefore, cannot become a primary. But hidden members are added as voting members and may, therefore, vote in primary elections. Read more how the
Operator manages voting members in replica set.

Hidden nodes are useful for tasks like backups or reporting, as they do not affect primary operations. Client applications will not connect to hidden nodes
because they are not listed in the replica set’s SRV record.

To add a hidden node with the Operator, set the setting the replsets.hidden.enabled  and replsets.hidden.size  options in the deploy/cr.yaml  Dle:

This conDguration example creates a cluster with 3 data instances and 2 hidden nodes:

Find the description of other available options in the replsets.hidden section of the Custom Resource options reference.

....
arbiter:
  enabled: true
  size: 1
  affinity:
    antiAffinityTopologyKey: "kubernetes.io/hostname"
    advanced:
      podAntiAffinity:
        requiredDuringSchedulingIgnoredDuringExecution:
        - labelSelector:
            matchLabels:
              app.kubernetes.io/component: mongod
              app.kubernetes.io/instance: cluster1
              app.kubernetes.io/managed-by: percona-server-mongodb-operator
              app.kubernetes.io/name: percona-server-mongodb
              app.kubernetes.io/part-of: percona-server-mongodb
              app.kubernetes.io/replset: rs0
          topologyKey: kubernetes.io/hostname

....
replsets:
  ....
  size: 3
  ....
  nonvoting:
    enabled: true
    size: 1
    ....

....
replsets:
  ....
  size: 3
  ....
  hidden:
    enabled: true
    size: 2
    ....



Manage voting members in replica set
Since hidden nodes can participate in elections, the Operator enforces rules to ensure the odd number of voting members and maintain a stable and compliant
replica set conDguration:

If the total number of voting members is even, the Operator converts one node to non-voting to maintain an odd number of voters. The node to convert is
typically the last Pod in the list

If the number of voting members is odd and not more than 7, all nodes participate in elections.

If the number of voting members exceeds 7, the Operator automatically converts some nodes to non-voting to stay within MongoDB’s limit of 7 voting
members.

To inspect the current conDguration, connect to the cluster with clusterAdmin privileges and run:

rs.config() command



7.9 Percona Server for MongoDB Sharding

About sharding
Sharding  provides horizontal database scaling, distributing data across multiple MongoDB Pods. It is useful for large data sets when a single machine’s
overall processing speed or storage capacity turns out to be not enough. Sharding allows splitting data across several machines with a special routing of each
request to the necessary subset of data (so-called shard).

A MongoDB Sharding involves the following components:

shard  - a replica set which contains a subset of data stored in the database (similar to a traditional MongoDB replica set),

mongos  - a query router, which acts as an entry point for client applications,

config servers  - a replica set to store metadata and conDguration settings for the sharded database cluster.

Percona Operator for MongoDB 1.6.0 supported only one shard of a MongoDB cluster; still, this limited sharding support allowed using mongos  as an entry point instead of
provisioning a load-balancer per replica set node. Multiple shards are supported starting from the Operator 1.7.0. Also, before the Operator 1.12.0 mongos were deployed by the
Deployment  object, and starting from 1.12.0 they are deployed by the StatefulSet  one.

Turning sharding on and off
Sharding is controlled by the sharding  section of the deploy/cr.yaml  conDguration Dle and is turned on by default.

To enable sharding, set the sharding.enabled  key to true . This will turn existing MongoDB replica set nodes into sharded ones).

To disable sharding, set the sharding.enabled  key to false . If backups are disabled (the backup.enabled  Custom Resource option set to false ), the
Operator will turn sharded MongoDB instances into unsharded one by one, so the database cluster will operate without downtime. If backups are enabled (the
backup.enabled  Custom Resource option is true ), the Operator will pause the cluster (to avoid Percona Backup for MongoDB misconDguration), update the
instances, and then unpause it back.

Configuring instances of a sharded cluster
When sharding is turned on, the Operator runs replica sets with conDg servers and mongos instances. Their number is controlled by configsvrReplSet.size
and mongos.size  keys, respectively.

ConDg servers have cfg  replica set name by default, which is used by the Operator in StatefulSet and Service names. If this name needs to be customized (for
example when migrating MongoDB cluster from barebone installation to Kubernetes), you can override the default cfg  variant using replsets.configuration
Custom Resource option in deploy/cr.yaml  as follows:

ConDg servers for now can properly work only with WiredTiger engine, and sharded MongoDB nodes can use either WiredTiger or InMemory one.

By default replsets section of the deploy/cr.yaml  conDguration Dle contains only one replica set, rs0 . You can add more replica sets with different names to
the replsets  section in a similar way. Please take into account that having more than one replica set is possible only with the sharding turned on.

The Operator will be able to remove a shard only when it contains no application (non-system) collections.

Checking connectivity to sharded and non-sharded cluster

Note

...
configuration: |
  replication:
    replSetName: customCfgRS
    ...

Note

Note

https://docs.mongodb.com/manual/reference/glossary/#term-sharding
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
http://localhost:8001/percona-operator-for-mongodb/print_page.html#operator-operator-replsets-section


With sharding turned on, you have mongos  service as an entry point to access your database. If you do not use sharding, you have to access mongod  processes
of your replica set.

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the credentials of the admin user, which are
stored in the Secrets  object.

1. List the Secrets objects

The Secrets object you are interested in has the my-cluster-name-secrets  name by default.

2. View the Secret contents to retrieve the admin user credentials.

The command returns the YAML Dle with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER  and MONGODB_DATABASE_ADMIN_PASSWORD
strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

3. Run a container with a MongoDB client and connect its console output to your terminal. The following command does this, naming the new Pod percona-
client :

Executing it may require some time to deploy the corresponding Pod.

4. Now run mongosh  tool inside the percona-client  command shell using the admin user credentialds you obtained from the Secret, and a proper
namespace name instead of the <namespace name>  placeholder. The command will look different depending on whether sharding is on (the default
behavior) or off:

$ kubectl get secrets -n <namespace>

$ kubectl get secret my-cluster-name-secrets -o yaml

Sample output

...
data:
  ...
  MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
  MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.24-13 --restart=Never -- bash -il

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.<namespace name>.svc.cluster.local/admin?
ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace name>.svc.cluster.local/admin?
replicaSet=rs0&ssl=false"

https://kubernetes.io/docs/concepts/configuration/secret/


7.10 Transport encryption (TLS/SSL)



7.10.1 Transport Layer Security (TLS)
Percona Operator for MongoDB uses Transport Layer Security (TLS) cryptographic protocol for the following types of communication:

External - to enable client applications communicate with the cluster

Internal - for communication between Percona Server for MongoDB instances in the cluster. The internal certiDcate is also used as an authorization method.

You control TLS usage with the tls.mode  option in the Custom Resource. This setting deDnes how Percona Server for MongoDB cluster handles TLS for both
internal and external connections. You can choose from the following modes:

allowTLS : The cluster accepts both TLS and non-TLS incoming connections, but does not use TLS for internal communication.

preferTLS  (default): The cluster uses TLS for internal communication and accepts both TLS and non-TLS external connections.

requireTLS : The cluster enforces TLS encryption for all connections and accepts only TLS connections.

disabled : The cluster completely disables TLS for all connections.

Example conDguration:

TLS Certificates
TLS security can be conDgured in several ways:

The Operator generates long-term certiDcates automatically during the cluster creation if there are no certiDcate secrets available. When generating
certiDcates, the Operator creates two Secrets objects named <cluster-name>-ssl  and <cluster-name>-ssl-internal . These Secrets are also
referenced in the secrets.ssl  and secrets.sslInternal  options in the Custom Resource.

This is the default behavior. If you need new certiDcates, and you must renew them manually.

To allow certiDcates automatically generated by the Operator, the tls.allowInvalidCertiDcates Custom Resource option is set to true  by default. You can set it to
false  when using other certiDcate generation methods, such as using cert-manager.

The Operator can use a speciDcally installed cert-manager, which will automatically generate and renew short-term TLS certiDcates

You can generate TLS certiDcates manually.

For testing purposes, you can use pre-generated certiDcates available in the deploy/ssl-secrets.yaml  Dle. But we strongly recommend to not use them on
any production system!

TLS configuration
The following sections provide guidelines how to:

ConDgure TLS security with the Operator using cert-manager

Generate certiDcates manually

Update certiDcates

Disable TLS temporarily

To use TLS for external tra`c, you need to additionally conDgure your client application. See this blog post  for detailed instruction with examples. Also, you
can check the o`cial MongoDB documentation .

For clients outside of your Kubernetes-based environment, you must also expose your cluster.

...
spec:
  ...
  tls:
    mode: preferTLS

https://www.percona.com/blog/authenticating-your-clients-to-mongodb-on-kubernetes-using-x509-certificates/
https://www.mongodb.com/docs/manual/tutorial/configure-ssl-clients/


7.10.2 Install and use the cert-manager

About the cert-manager
The cert-manager  is a Kubernetes certiDcate management controller which widely used to automate the management and issuance of TLS certiDcates. It is
community-driven, and open source.

When you have already installed cert-manager and deploy the operator, the operator requests a certiDcate from the cert-manager. The cert-manager acts as a self-
signed issuer and generates certiDcates. The Percona Operator self-signed issuer is local to the operator namespace. This self-signed issuer is created because
Percona Server for MongoDB requires all certiDcates issued by the same CA (CertiDcate authority).

Self-signed issuer allows you to deploy and use the Percona Operator without creating a cluster issuer separately.

Install the cert-manager
The steps to install the cert-manager are the following:

create a namespace,

disable resource validations on the cert-manager namespace,

install the cert-manager.

The following commands perform all the needed actions:

After the installation, you can verify the cert-manager by running the following command:

The result should display the cert-manager and webhook active and running:

Once you create the database with the Operator, it will automatically trigger the cert-manager to create certiDcates. Whenever you check certiDcates for
expiration, you will Dnd that they are valid and short-term.

$ kubectl apply -f https://github.com/jetstack/cert-manager/releases/download/v1.18.2/cert-manager.yaml --validate=false

$ kubectl get pods -n cert-manager

NAME                                       READY   STATUS    RESTARTS   AGE
cert-manager-7d59dd4888-tmjqq              1/1     Running   0          3m8s
cert-manager-cainjector-85899d45d9-8ncw9   1/1     Running   0          3m8s
cert-manager-webhook-84fcdcd5d-697k4       1/1     Running   0          3m8s

https://cert-manager.io/docs/


7.10.3 Generate TLS certificates manually

Manual certiDcate generation didn’t work in Operator version 1.16.0. This issue is Dxed starting from version 1.16.1.

You can generate TLS certiDcates manually instead of using the Operator’s automatic certiDcate generation. This approach gives you full control over certiDcate
properties and is useful for production environments with speciDc security requirements.

What you’ll create
When you follow the steps from this guide, you’ll generate these certiDcate Dles:

server.pem  - Server certiDcate for MongoDB nodes

server-key.pem  - Private key for the server certiDcate

client.pem  - Client certiDcate for external connections

client-key.pem  - Private key for the client certiDcate

ca.pem  - CertiDcate Authority certiDcate

ca-key.pem  - CertiDcate Authority private key

Certificate requirements
You need to create two sets of certiDcates:

1. External certiScates - for client connections from outside the cluster. This set is mandatory

2. Internal certiScates - for communication between MongoDB nodes within the cluster. You can omit generating a separate of certiDcates for internal
communication. In this case, the operator reuses the external certiDcates for both external and internal communication.

Generating two separate sets of certiDcates is not mandatory but highly recommended. Using different certiDcates for internal and external connections gives
you more control and improves security. For example, you can choose to renew or replace external certiDcates more often than internal ones, or set different
expiration dates for each. This makes managing and securing your cluster easier in the long run.

After creating the certiDcates, you’ll create two Kubernetes Secrets and reference them in your cluster conDguration.

Prerequisites
Before you start, make sure you have:

cfssl  and cfssljson  tools installed on your system

Your cluster name and namespace ready

Access to your Kubernetes cluster

Procedure

Generate certificates

Replace my-cluster-name  and my-namespace  with your actual cluster name and namespace in the commands below.

Warning

Sharded cluster (sharding is enabled)

1. Set your cluster variables

2. Create the CertiDcate Authority (CA)

This command creates a root CertiDcate Authority that will sign all your certiDcates:

$ CLUSTER_NAME=my-cluster-name
$ NAMESPACE=my-namespace



3. Create CA conDguration Dle that deDnes how the CA will sign certiDcates:

4. Generate the certiDcate for internal MongoDB node communication, including all shard components:

5. Bundle the server certiDcate with the CA certiDcate:

w. Create a Kubernetes Secret for internal cluster communication:

$ cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca
  {
    "CN": "Root CA",
    "names": [
      {
        "O": "PSMDB"
      }
    ],
    "key": {
      "algo": "rsa",
      "size": 2048
    }
  }
EOF

$ cat <<EOF > ca-config.json
  {
    "signing": {
      "default": {
        "expiry": "87600h",
        "usages": ["signing", "key encipherment", "server auth", "client auth"]
      }
    }
  }
EOF

$ cat <<EOF | cfssl gencert -ca=ca.pem  -ca-key=ca-key.pem -config=./ca-config.json - | cfssljson -bare server
  {
    "hosts": [
      "localhost",
      "${CLUSTER_NAME}-rs0",
      "${CLUSTER_NAME}-rs0.${NAMESPACE}",
      "${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local",
      "*.${CLUSTER_NAME}-rs0",
      "*.${CLUSTER_NAME}-rs0.${NAMESPACE}",
      "*.${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local",
      "${CLUSTER_NAME}-mongos",
      "${CLUSTER_NAME}-mongos.${NAMESPACE}",
      "${CLUSTER_NAME}-mongos.${NAMESPACE}.svc.cluster.local",
      "*.${CLUSTER_NAME}-mongos",
      "*.${CLUSTER_NAME}-mongos.${NAMESPACE}",
      "*.${CLUSTER_NAME}-mongos.${NAMESPACE}.svc.cluster.local",
      "${CLUSTER_NAME}-cfg",
      "${CLUSTER_NAME}-cfg.${NAMESPACE}",
      "${CLUSTER_NAME}-cfg.${NAMESPACE}.svc.cluster.local",
      "*.${CLUSTER_NAME}-cfg",
      "*.${CLUSTER_NAME}-cfg.${NAMESPACE}",
      "*.${CLUSTER_NAME}-cfg.${NAMESPACE}.svc.cluster.local"
    ],
    "names": [
      {
        "O": "PSMDB"
      }
    ],
    "CN": "${CLUSTER_NAME/-rs0}",
    "key": {
      "algo": "rsa",
      "size": 2048
    }
  }
EOF

$ cfssl bundle -ca-bundle=ca.pem -cert=server.pem | cfssljson -bare server



7. Generate the certiDcate for external client connections, including all shard components:

x. Create a Kubernetes Secret for external client connections:

Replica set only (no sharding)

1. Set your cluster variables

2. Create the CertiDcate Authority (CA)

This command creates a root CertiDcate Authority that will sign all your certiDcates:

$ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=server.pem --from-file=tls.key=server-
key.pem --from-file=ca.crt=ca.pem --type=kubernetes.io/tls

$ cat <<EOF | cfssl gencert -ca=ca.pem  -ca-key=ca-key.pem -config=./ca-config.json - | cfssljson -bare client
  {
    "hosts": [
      "${CLUSTER_NAME}-rs0",
      "${CLUSTER_NAME}-rs0.${NAMESPACE}",
      "${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local",
      "*.${CLUSTER_NAME}-rs0",
      "*.${CLUSTER_NAME}-rs0.${NAMESPACE}",
      "*.${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local",
      "${CLUSTER_NAME}-mongos",
      "${CLUSTER_NAME}-mongos.${NAMESPACE}",
      "${CLUSTER_NAME}-mongos.${NAMESPACE}.svc.cluster.local",
      "*.${CLUSTER_NAME}-mongos",
      "*.${CLUSTER_NAME}-mongos.${NAMESPACE}",
      "*.${CLUSTER_NAME}-mongos.${NAMESPACE}.svc.cluster.local",
      "${CLUSTER_NAME}-cfg",
      "${CLUSTER_NAME}-cfg.${NAMESPACE}",
      "${CLUSTER_NAME}-cfg.${NAMESPACE}.svc.cluster.local",
      "*.${CLUSTER_NAME}-cfg",
      "*.${CLUSTER_NAME}-cfg.${NAMESPACE}",
      "*.${CLUSTER_NAME}-cfg.${NAMESPACE}.svc.cluster.local"
    ],
    "names": [
      {
        "O": "PSMDB"
      }
    ],
    "CN": "${CLUSTER_NAME/-rs0}",
    "key": {
      "algo": "rsa",
      "size": 2048
    }
  }
EOF

$ kubectl create secret generic my-cluster-name-ssl --from-file=tls.crt=client.pem --from-file=tls.key=client-key.pem --
from-file=ca.crt=ca.pem --type=kubernetes.io/tls

$ CLUSTER_NAME=my-cluster-name
$ NAMESPACE=my-namespace

$ cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca
  {
    "CN": "Root CA",
    "names": [
      {
        "O": "PSMDB"
      }
    ],
    "key": {
      "algo": "rsa",
      "size": 2048
    }
  }
EOF



3. Create a CA conDguration Dle that deDnes how the CA will sign certiDcates:

4. Generate the certiDcate for internal MongoDB node communication:

5. Bundle the server certiDcate with the CA certiDcate:

w. Create a Kubernetes Secret for internal cluster communication:

7. Generate the certiDcate for external client connections:

$ cat <<EOF > ca-config.json
  {
    "signing": {
      "default": {
        "expiry": "87600h",
        "usages": ["signing", "key encipherment", "server auth", "client auth"]
      }
    }
  }
EOF

$ cat <<EOF | cfssl gencert -ca=ca.pem  -ca-key=ca-key.pem -config=./ca-config.json - | cfssljson -bare server
  {
    "hosts": [
      "localhost",
      "${CLUSTER_NAME}-rs0",
      "${CLUSTER_NAME}-rs0.${NAMESPACE}",
      "${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local",
      "*.${CLUSTER_NAME}-rs0",
      "*.${CLUSTER_NAME}-rs0.${NAMESPACE}",
      "*.${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local"
    ],
    "names": [
      {
        "O": "PSMDB"
      }
    ],
    "CN": "${CLUSTER_NAME/-rs0}",
    "key": {
      "algo": "rsa",
      "size": 2048
    }
  }
EOF

$ cfssl bundle -ca-bundle=ca.pem -cert=server.pem | cfssljson -bare server

$ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=server.pem --from-file=tls.key=server-
key.pem --from-file=ca.crt=ca.pem --type=kubernetes.io/tls

$ cat <<EOF | cfssl gencert -ca=ca.pem  -ca-key=ca-key.pem -config=./ca-config.json - | cfssljson -bare client
  {
    "hosts": [
      "${CLUSTER_NAME}-rs0",
      "${CLUSTER_NAME}-rs0.${NAMESPACE}",
      "${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local",
      "*.${CLUSTER_NAME}-rs0",
      "*.${CLUSTER_NAME}-rs0.${NAMESPACE}",
      "*.${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local"
    ],
    "names": [
      {
        "O": "PSMDB"
      }
    ],
    "CN": "${CLUSTER_NAME/-rs0}",
    "key": {
      "algo": "rsa",
      "size": 2048
    }
  }
EOF



Configure your cluster

After creating the Secrets, add them to your cluster conDguration in the deploy/cr.yaml  Dle:

Important notes

1. If you only create the external certiDcate, the Operator will use it for both external and internal communications instead of generating a separate internal
certiDcate.

2. The commands above use rs0  as the replica set name (the default). If you set a different name in the replsets.name  Custom Resource option, update the
commands accordingly.

Additional resources
Check the sample certiDcates in deploy/ssl-secrets.yaml  for reference

Review MongoDB certiDcate requirements in the upstream documentation 

x. Create a Kubernetes Secret for external client connections:

$ kubectl create secret generic my-cluster-name-ssl --from-file=tls.crt=client.pem --from-file=tls.key=client-key.pem --
from-file=ca.crt=ca.pem --type=kubernetes.io/tls

spec:
  secrets:
    ssl: my-cluster-name-ssl          # External certificate secret
    sslInternal: my-cluster-name-ssl-internal  # Internal certificate secret

https://www.mongodb.com/docs/manual/tutorial/configure-ssl/#member-certificate-requirements


7.10.4 Update certificates
How your TLS certiDcates are updated depends on how they were created:

CertiDcates generated by the Operator are long-term. If you need to rotate them, you must do it manually.

CertiDcates issued by the cert-manager are short-term. They are valid for 3 months. The cert-manager automatically reissues the certiDcates on schedule and
without downtime.

DB Pod N

Secret

my-cluster-name-ca-certr
 (root certificate)

TLS
certificates

TLS
certificates

cert-manager

my-cluster-name-ssl my-cluster-name-ssl-internal
Secret

CertiDcates manually generated by you are not renewed automatically. It is your responsibility to timely update them. Use the steps in the following sections
for how to do it.

Check your certificates for expiration

1. First, check the necessary secrets names ( my-cluster-name-ssl  and my-cluster-name-ssl-internal  by default):

You will have the following response:

$ kubectl get certificate

NAME                           READY   SECRET                         AGE
my-cluster-name-ssl            True    my-cluster-name-ssl            49m
my-cluster-name-ssl-internal   True    my-cluster-name-ssl-internal   49m



This command is available if you have cert-manager installed; if not, you can still check the necessary secrets names with kubectl get secrets  command.

1. Optionally you can also check that the certiDcates issuer is up and running:

The response should be as follows:

Again, this command is provided by cert-manager; if you don’t have it installed, you can still use kubectl get secrets .

The presence of two issuers has the following meaning. The my-cluster-name-psmdb-ca-issuer  issuer is used to create a self signed CA certiDcate ( my-cluster-name-ca-
cert ), and then the my-cluster-name-psmdb-issuer  issuer is used to create SSL certiDcates ( my-cluster-name-ssl  and my-cluster-name-ssl-internal ) signed by the
my-cluster-name-ca-cert  CA certiDcate.

2. Now use the following command to Dnd out the certiDcates validity dates, substituting Secrets names if necessary:

The resulting output will be self-explanatory:

Update certificates without downtime
If you don’t use cert-manager and have created certiFcates manually, you can follow the next steps to perform a no-downtime update of these certiDcates if they
are still valid.

For already expired certiDcates, follow the alternative way.

Having non-expired certiDcates, you can roll out new certiDcates (both CA and TLS) with the Operator as follows.

1. Generate a new CA certiDcate ( ca.pem ). Optionally you can also generate a new TLS certiDcate and a key for it, but those can be generated later on step 6.

2. Get the current CA ( ca.pem.old ) and TLS ( tls.pem.old ) certiDcates and the TLS certiDcate key ( tls.key.old ):

3. Combine new and current ca.pem  into a ca.pem.combined  Dle:

4. Create a new Secrets object with old TLS certiDcate ( tls.pem.old ) and key ( tls.key.old ), but a new combined ca.pem  ( ca.pem.combined ):

$ kubectl get issuer

NAME                              READY   AGE
my-cluster-name-psmdb-issuer      True    61m
my-cluster-name-psmdb-ca-issuer   True    61m

Note

$ {
  kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.tls\.crt}' | base64 --decode | openssl x509 -noout -
dates
  kubectl get secret/my-cluster-name-ssl -o jsonpath='{.data.ca\.crt}' | base64 --decode | openssl x509 -noout -dates
  }

notBefore=Apr 25 12:09:38 2022 GMT notAfter=Jul 24 12:09:38 2022 GMT
notBefore=Apr 25 12:09:38 2022 GMT notAfter=Jul 24 12:09:38 2022 GMT

Note

$ kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.ca\.crt}' | base64 --decode > ca.pem.old
$ kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.tls\.crt}' | base64 --decode > tls.pem.old
$ kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.tls\.key}' | base64 --decode > tls.key.old

$ cat ca.pem ca.pem.old >> ca.pem.combined

$ kubectl delete secret/my-cluster-name-ssl-internal
$ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=tls.pem.old --from-
file=tls.key=tls.key.old --from-file=ca.crt=ca.pem.combined --type=kubernetes.io/tls



5. The cluster will go through a rolling reconciliation, but it will do it without problems, as every node has old TLS certiDcate/key, and both new and old CA
certiDcates.

w. If new TLS certiDcate and key weren’t generated on step 1, do that now.

7. Create a new Secrets object for the second time: use new TLS certiDcate ( server.pem  in the example) and its key ( server-key.pem ), and again the
combined CA certiDcate ( ca.pem.combined ):

x. The cluster will go through a rolling reconciliation, but it will do it without problems, as every node already has a new CA certiDcate (as a part of the
combined CA certiDcate), and can successfully allow joiners with new TLS certiDcate to join. Joiner node also has a combined CA certiDcate, so it can
authenticate against older TLS certiDcate.

9. Create a Dnal Secrets object: use new TLS certiDcate ( server.pmm ) and its key ( server-key.pem ), and just the new CA certiDcate ( ca.pem ):

10. The cluster will go through a rolling reconciliation, but it will do it without problems: the old CA certiDcate is removed, and every node is already using new
TLS certiDcate and no nodes rely on the old CA certiDcate any more.

Update certificates with downtime
If your certiDcates have been already expired (or if you continue to use the Operator version prior to 1.9.0), you should move through the pause - update Secrets -
unpause route as follows.

1. Pause the cluster in a standard way, and make sure it has reached its paused state.

2. If cert-manager is used, delete issuer and TLS certiDcates:

3. Delete Secrets to force the SSL reconciliation:

4. Check certiDcates to make sure reconciliation have succeeded.

5. Unpause the cluster in a standard way, and make sure it has reached its running state.

Modify certificates generation
There may be reasons to tweak the certiDcates generation, making it better Dt some needs. Of course, maximum _exibility can be obtained with manual
certiDcates generation, but sometimes slight tweaking the already automated job may be enough.

The following example shows how to increase CA duration with cert-manager for a cluster named cluster1 :

1. Delete the psmdb  Custom Resource in the proper namespace (this will cause deletion of all Pods of the cluster, but later you will recreate the cluster using
the same deploy/cr.yaml  _ie from which it was originally created).

you may need to make sure that finalizers.percona.com/delete-psmdb-pvc  is not set if you want to preserver Persistent Volumes with the data.

Deletion command should look as follows:

$ kubectl delete secret/my-cluster-name-ssl-internal
$ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=server.pem --from-file=tls.key=server-
key.pem --from-file=ca.crt=ca.pem.combined --type=kubernetes.io/tls

$ kubectl delete secret/my-cluster-name-ssl-internal
$ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=server.pem --from-file=tls.key=server-
key.pem --from-file=ca.crt=ca.pem --type=kubernetes.io/tls

$ {
  kubectl delete issuer/my-cluster-name-psmdb-ca-issuer issuer/my-cluster-name-psmdb-issuer 
  kubectl delete certificate/my-cluster-name-ssl certificate/my-cluster-name-ssl-internal
  }

$ kubectl delete secret/my-cluster-name-ssl secret/my-cluster-name-ssl-internal

Note

$ kubectl -n <namespace_name> delete psmdb cluster1



2. Deletion takes time. Check that all Pods disappear with kubectl -n <namespace_name> get pods  command, and delete certiDcate related resources:

3. Create your own custom CA:

Apply it as usual, with the kubectl -n <namespace_name> apply -f my_new_ca.yml  command.

4. Recreate the cluster from the original deploy/cr.yaml  conDguration Dle:

5. Verify certiDcate duration in usual way.

$ kubectl -n <namespace_name> delete issuer.cert-manager.io/cluster1-psmdb-ca-issuer issuer.cert-manager.io/cluster1-psmdb-
issuer certificate.cert-manager.io/cluster1-ssl-internal certificate.cert-manager.io/cluster1-ssl certificate.cert-
manager.io/cluster1-ca-cert secret/cluster1-ca-cert secret/cluster1-ssl secret/cluster1-ssl-internal

my_new_ca.yml

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
  name: cluster1-psmdb-ca-issuer
spec:
  selfSigned: {}
---
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
  name: cluster1-ca-cert
spec:
  commonName: cluster1-ca
  duration: 10000h0m0s
  isCA: true
  issuerRef:
    kind: Issuer
    name: cluster1-psmdb-ca-issuer
  renewBefore: 730h0m0s
  secretName: cluster1-ca-cert

$ kubectl -n <namespace_name> apply -f deploy/cr.yaml



7.10.5 Run Percona Server for MongoDB without TLS
You can run Percona Server for MongoDB without TLS. For example, for testing or demonstration purposes. However, we recommend that you have the TLS
protocol enabled.

You can start a new cluster without TLS or disable the TLS protocol for a running cluster. See the corresponding sections for steps.

Disable TLS for a new cluster
To disable TLS protocol for a new cluster, edit the deploy/cr.yaml  Custom Resource manifest as follows:

set the tls.mode  key to disabled

set the unsafeFlags.tls  to true .

Apply the manifest:

Disable TLS for a running cluster
To disable TLS protocol for a running cluster, follow these steps:

1. Pause the cluster. Since the cluster is running, run the kubectl patch  command to update the cluster conDguration. Replace the <namespace>
placeholder with your namespace. For example, for the cluster with the name my-cluster-name , the command is:

2. Wait for the cluster to be paused. Check the status with the kubectl get psmdb  command:

3. Disable the TLS protocol by setting the following conDguration in the deploy/cr.yaml  Custom Resource manifest:

4. Apply the changes:

5. Now resume the cluster with the kubectl patch  command:

...
spec:
  ...
  unsafeFlags
    tls: true
    ...
  tls:
    mode: disabled

$ kubectl apply -f deploy/cr.yaml -n <namespace>

$ kubectl patch psmdb my-cluster-name -n <namespace> --type json -p='[{"op":"add","path":"/spec/pause","value":true}]'

$ kubectl get psmdb -n <namespace>

Expected output

NAME              ENDPOINT                                                 STATUS   AGE
my-cluster-name   my-cluster-name-mongos.default.svc.cluster.local:27017   paused   3m

...
spec:
  ...
  unsafeFlags
    tls: true
    ...
  tls:
    mode: disabled

$ kubectl apply -f deploy/cr.yaml -n <namespace>



w. Wait for the cluster to be resumed. Check the status with the kubectl get psmdb  command.

Re-enable TLS
To re-enable TLS protocol for a running cluster, follow these steps:

1. Pause the cluster. Edit the deploy/cr.yaml  Custom Resource manifest and set spec.pause  key to true :

2. Apply the changes:

3. Wait for the cluster to be paused. Check the status with the kubectl get psmdb  command:

4. Enable the TLS protocol by setting the following conDguration in the deploy/cr.yaml  Custom Resource manifest:

5. Apply the changes:

w. Now resume the cluster. Edit the deploy/cr.yaml  Custom Resource manifest and set the spec.pause  key to false :

7. Apply the changes:

x. Wait for the cluster to be resumed. Check the status with the kubectl get psmdb  command.

$ kubectl patch psmdb my-cluster-name -n <namespace> --type json -p='[{"op":"add","path":"/spec/pause","value":false}]'

spec:
  pause: true

$ kubectl apply -f deploy/cr.yaml -n <namespace>

$ kubectl get psmdb -n <namespace>

...
spec:
  ...
  unsafeFlags
    tls: false
    ...
  tls:
    mode: preferTLS

$ kubectl apply -f deploy/cr.yaml -n <namespace>

spec:
  pause: false

$ kubectl apply -f deploy/cr.yaml -n <namespace>



7.11 Data-at-rest encryption

Data-at-rest encryption ensures that data stored on disk remains protected even if the underlying storage is compromised. This process is transparent to your
applications, meaning you don’t need to change the application’s code. If an unauthorized user gains access to the storage, they can’t read the data Dles.

To learn more about data-at-rest-encryption in Percona Server for MongoDB, see the Data-at-rest encryption  documentation.

Data-at-rest encryption is turned on by default. The Operator implements it in one of the following ways:

uses an encryption key stored in a Secret

gets encryption key from the HashiCorp Vault key storage

Use encryption key Secret

1. Specify the name of the encryption key Secret in the secrets.encryptionKey  key in the deploy/cr.yaml  Dle:

The Operator creates the encryption key Secret automatically if it doesn’t exist. If you would like to create it yourself, ensure that the key must be a 32
character string encoded in base64 .

2. Specify the following MongoDB encryption-speciDc options in the replsets.configuration , replsets.nonvoting.configuration , and
sharding.configsvrReplSet.configuration  keys:

Set the enableEncryption  option to true  (the default value). Specify a proper cipher mode for decryption in the security.encryptionCipherMode
option. It should be either AES256-CBC  (the default value) or AES256-GCM .

Apply the modiDed cr.yaml  conDguration Dle:

Use HashiCorp Vault storage for encryption keys

You can conDgure the Operator to use HashiCorp Vault  storage for encryption keys - a universal, secure and reliable way to store and distribute secrets
without depending on the operating system, platform or cloud provider.

The Operator will use Vault if the deploy/cr.yaml  conDguration Dle contains the following items:

a secrets.vault  key equal to the name of a specially created Secret,

configuration  keys for mongod  and conDg servers with a number of Vault-speciDc options.

The Operator itself neither installs Vault, nor conDgures it. You must do both operations manually. Refer to the following sections for steps.

Create the namespace

It is a good practice to isolate workloads in Kubernetes using namespaces. Create a namespace with the following command:

Version added: 1.1.0

secrets:
  ...
  encryptionKey: my-cluster-name-mongodb-encryption-key

...
configuration: |
  ...
  security:
    enableEncryption: true
    encryptionCipherMode: "AES256-CBC"
    ...

$ kubectl deploy -f deploy/cr.yaml

Version added: 1.13.0

https://docs.percona.com/percona-server-for-mongodb/latest/data-at-rest-encryption.html
https://docs.mongodb.com/manual/tutorial/configure-encryption/#local-key-management
https://www.vaultproject.io/


Export the namespace as an environment variable to simplify further conDguration and management

Install Vault

For this setup, we install Vault in Kubernetes using the Helm 3 package manager . However, Helm is not required — any supported Vault deployment (on-
premises, in the cloud, or a managed Vault service) works as long as the Operator can reach it.

Read more about installation in Vault documentation .

1. Add and update the Vault Helm repository.

2. Install Vault:

3. Retrieve the Pod name where Vault is running:

4. After Vault is installed, you need to initialize it. Run the following command:

The command does the following:

Connects to the Vault Pod

Initializes Vault server

Creates 1 unseal key share which is required to unseal the server

Outputs the init response in JSON format to a local Dle /tmp/vault-init . It includes unseal keys and root token.

5. Vault is started in a sealed state. In this state Vault can access the storage but it cannot decrypt data. In order to use Vault, you need to unseal it.

Retrieve the unseal key from the Dle:

w. Now, unseal Vault. Run the following command on every Pod where Vault is running:

$ kubectl create namespace vault

NAMESPACE="vault"

$ helm repo add hashicorp https://helm.releases.hashicorp.com
$ helm repo update

$ helm install vault hashicorp/vault --namespace $NAMESPACE

Sample output

NAME: vault
LAST DEPLOYED: Thu Sep 18 12:11:08 2025
NAMESPACE: vault
STATUS: deployed
REVISION: 1
NOTES:
Thank you for installing HashiCorp Vault!

Now that you have deployed Vault, you should look over the docs on using
Vault with Kubernetes available here:
https://developer.hashicorp.com/vault/docs

$ kubectl -n $NAMESPACE get pod -l app.kubernetes.io/name=vault -o jsonpath='{.items[0].metadata.name}'

Sample output

vault-0

$ kubectl exec -it pod/vault-0 -n $NAMESPACE -- vault operator init -key-shares=1 -key-threshold=1 -format=json > 
/tmp/vault-init
$ unsealKey=$(jq -r ".unseal_keys_b64[]" < /tmp/vault-init)

$ unsealKey=$(jq -r ".unseal_keys_b64[]" < /tmp/vault-init)

https://helm.sh/
https://www.vaultproject.io/docs/platform/k8s


Configure Vault

At this step you need to conDgure Vault and enable secrets within it. To do so you must Drst authenticate in Vault.

When you started Vault, it generates and starts with a root token  that provides full access to Vault. Use this token to authenticate.

For the purposes of this tutorial we use the root token in further sections. For security considerations, the use of root token is not recommended. Refer to the Create token  in Vault
documentation how to create user tokens.

1. Extract the Vault root token from the Dle where you saved the init response output:

2. Authenticate in Vault with this token:

3. Now enable the key-value secrets engine at the path secret  with the following command:

$ kubectl exec -it pod/vault-0 -n $NAMESPACE -- vault operator unseal "$unsealKey"

Sample output

Key             Value
---             -----
Seal Type       shamir
Initialized     true
Sealed          false
Total Shares    1
Threshold       1
Version         1.20.1
Build Date      2025-07-24T13:33:51Z
Storage Type    file
Cluster Name    vault-cluster-55062a37
Cluster ID      37d0c2e4-8f47-14f7-ca49-905b66a1804d
HA Enabled      false

Note

$ cat /tmp/vault-init | jq -r ".root_token"

Sample output

hvs.CvmS......gXWMJg9r

$ kubectl exec -it vault-0 -n $NAMESPACE -- /bin/sh
$ vault login hvs.CvmS......gXWMJg9r

Expected output

Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"
again. Future Vault requests will automatically use this token.

Key                  Value
---                  -----
token                hvs.CvmS......gXWMJg9r
token_accessor       iMGp477aReYkPBWrR42Z3L6R
token_duration       ∞
token_renewable      false
token_policies       ["root"]
identity_policies    []
policies             ["root"]`

$ vault secrets enable -path secret kv-v2

https://developer.hashicorp.com/vault/docs/concepts/tokens
https://developer.hashicorp.com/vault/docs/commands/token/create


4. (Optional) You can also enable audit. This is not mandatory, but useful:

Create a Secret for Vault

To enable Vault for the Operator, create a Secret object for it using the Vault token.

=== “HTTPS access with TLS”

Reference the Secret in your Custom Resource manifest

Now, reference the Vault Secret in the Operator Custom Resource manifest. You also need the following Vault-related information:

A Vault server name and port

Path to the token Dle. When you apply the new conDguration, the Operator creates the required directories and places the token Dle there.

The secrets mount path in the format <mount-path>/data/dc/<cluster name>/<path> .

Path to TLS certiDcates if you deployed Vault with TLS 

Contents of the ca.cert certiDcate Dle

Expected output

Success! Enabled the kv-v2 secrets engine at: secret/

$ vault audit enable file file_path=/vault/vault-audit.log

Expected output

Success! Enabled the file audit device at: file/

HTTP access without TLS

$ kubectl create secret generic vault-secret --from-literal=token="hvs.CvmS......gXWMJg9r"

 If you [deployed Vault with TLS :octicons-link-external-16:](https://developer.hashicorp.com/vault/docs/auth/cert), include 
the path to TLS certificates when you create a Secret.

``` {.bash data-prompt="$" }
$ kubectl create secret generic vault-secret --from-literal=token="hvs.CvmS......gXWMJg9r" --from-file=ca.crt=<path to
CA>/ca.crt
```

https://developer.hashicorp.com/vault/docs/auth/cert


1. Apply your modiDed cr.yaml  Dle:

2. To verify that everything was conDgured properly, use the following log Dltering command (substitute the <cluster name>  and <namespace>  placeholders
with your real cluster name and namespace):

Find more details on how to install and conDgure Vault in Vault documentation .

HTTP access without TLS

Modify your deploy/cr.yaml  as follows:

1. Set the secrets.vault  key to the name of your Secret created on the previous step.

2. Add Vault-speciDc options to the replsets.configuration , replsets.nonvoting.configuration , and
sharding.configsvrReplSet.configuration  keys, using the following template:

HTTPS access with TLS

1. Set the secrets.vault  key to the name of your Secret created on the previous step.

2. Add Vault-speciDc options to the replsets.configuration , replsets.nonvoting.configuration , and
sharding.configsvrReplSet.configuration  keys, using the following template:

While adding options, modify this template as follows:

substitute the <cluster name>  placeholder with your real cluster name,

substitute the placeholder with rs0  when adding options to replsets.configuration  and replsets.nonvoting.configuration ,

substitute the placeholder with cfg  when adding options to sharding.configsvrReplSet.configuration .

secrets:
  vault: vault-secret
...
configuration: |
  ...
  security:
    enableEncryption: true
    vault:
      serverName: vault
      port: 8200
      tokenFile: /etc/mongodb-vault/token
      secret: secret/data/dc/<cluster name>/<path>
      disableTLSForTesting: true
    ...

...
configuration: |
  ...
  security:
    enableEncryption: true
    vault:
      serverName: vault
      port: 8200
      tokenFile: /etc/mongodb-vault/token
      secret: secret/data/dc/<cluster name>/<path>
      serverCAFile: /etc/mongodb-vault/ca.crt
    ...

$ kubectl deploy -f deploy/cr.yaml

$ kubectl logs <cluster name>-rs0-0 -c mongod -n <namespace> | grep -i "Encryption keys DB is initialized successfully"

https://learn.hashicorp.com/vault?track=getting-started-k8s#getting-started-k8s


7.12 Telemetry
The Telemetry function enables the Operator gathering and sending basic anonymous data to Percona, which helps us to determine where to focus the
development and what is the uptake for each release of Operator.

The following information is gathered:

ID of the Custom Resource (the metadata.uid  Deld)

Kubernetes version

Platform (is it Kubernetes or Openshift)

Is PMM enabled, and the PMM Version

Operator version

Mongo version

Percona Backup for MongoDB (PBM) version

Is sharding enabled (starting from the Operator version 1.13)

Is Hashicorp Vault enabled (starting from the Operator version 1.13)

Is the Operator deployed in a cluster-wide mode (starting from the Operator version 1.13)

Is Volume Expansion enabled (starting from the Operator version 1.19)

Are multi-cluster Services enabled (starting from the Operator version 1.19)

Does the Operator manage custom MongoDB users and/or custom MongoDB roles (starting from the Operator version 1.19)

Is the Operator deployed with Helm

Are sidecar containers used

Are backups used, are point-in-time recovery and/or scheduled physical backup features used, if so

How large is the cluster

We do not gather anything that identify a system, but the following thing should be mentioned: Custom Resource ID is a unique ID generated by Kubernetes for
each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server when the Operator connects to it at scheduled times to obtain fresh information about
version numbers and valid image paths needed for the upgrade.

The landing page for this service, check.percona.com , explains what this service is.

You can disable telemetry with a special option when installing the Operator:

if you install the Operator with helm, use the following installation command:

if you don’t use helm for installation, you have to edit the operator.yaml  before applying it with the kubectl apply -f deploy/operator.yaml
command. Open the operator.yaml  Dle with your text editor, Dnd the value of the DISABLE_TELEMETRY  environment variable and set it to true :

$ helm install my-db percona/psmdb-db --version 1.21.1 --namespace my-namespace --set disable_telemetry="true"

env:
  ...
  - name: DISABLE_TELEMETRY
    value: "true"
  ...

https://check.percona.com/


10.7 Configure concurrency for a cluster reconciliation
Reconciliation is the process by which the Operator continuously compares the desired state with the actual state of the cluster. The desired state is deDned in a
Kubernetes custom resource, like PerconaServerMongoDB.

If the actual state does not match the desired state, the Operator takes actions to bring the system into alignment. This means creating, updating, or deleting
Kubernetes resources (Pods, Services, ConDgMaps, etc.) or performing database-speciDc operations like scaling, backups, or failover.

Reconciliation is triggered by a variety of events, including:

Changes to the cluster conDguration

Changes to the cluster state

Changes to the cluster resources

By default, the Operator has one reconciliation worker. This means that if you deploy or update 2 clusters at the same time, the Operator will reconcile them
sequentially.

The MAX_CONCURRENT_RECONCILES  environment variable in the percona-server-mongodb-operator  deployment controls the number of concurrent workers
that can reconcile resources in Percona Server for MongoDB clusters in parallel.

Thus, to extend the previous example, if you set the number of reconciliation workers to 2 , the Operator will reconcile both clusters in parallel. This also helps
you with benchmarking the Operator performance.

The general recommendation is to set the number of concurrent workers equal to the number of Percona Server for MongoDB clusters. When the number of
workers is greater, the excessive workers will remain idle.

Set the number of reconciliation workers

1. Check the index of the MAX_CONCURRENT_RECONCILES  environment variable using the following command:

2. To set a new value and verify it’s been updated, run the following command:

The command does the following:

$ kubectl get deployment percona-server-mongodb-operator -o jsonpath='{.spec.template.spec.containers[0].env[?
(@.name=="MAX_CONCURRENT_RECONCILES")].value}'

Sample output

1

$ kubectl patch deployment percona-server-mongodb-operator \
--type='strategic' \
-o yaml \
-p='{
    "spec": {
        "template": {
            "spec": {
                "containers": [
                    {
                        "name": "percona-server-mongodb-operator",
                        "env": [
                            {
                                "name": "MAX_CONCURRENT_RECONCILES",
                                "value": "2"
                            }
                        ]
                    }
                ]
            }
        }
    }
}'\
-o jsonpath='{.spec.template.spec.containers[0].env[?(@.name=="MAX_CONCURRENT_RECONCILES")].value}'



Patches the deployment to update the MAX_CONCURRENT_RECONCILES  environment variable

Sets the value to 2 .

Outputs the result

You can set the value to any number greater than 0.

Sample output

2



8 Management



8.1 Backup and restore



8.1.1 About backups
You can back up your data in two ways:

On-demand. You can do them manually at any moment.

Scheduled backups. ConDgure backups and their schedule in the deploy/cr.yaml . The Operator makes them automatically according to the speciDed
schedule.

To make backups and restores, the Operator uses the Percona Backup for MongoDB (PBM)  tool. The Operator runs PBM as a sidecar container to the
database Pods. It conDgures PBM in the following cases:

when it creates a new cluster if you deDned the backup storage conDguration for it.

when you conDgure the backup storage for a backup

when you start a restore on a new cluster and deDned the backup storage conDguration within the backupSource  subsection of the Restore resource.

Backup storage
You can store Percona Server for MongoDB backups outside the Kubernetes cluster using the following remote backup storages:

Amazon S3 or S3-compatible storage ,

MinIO  S3-compatible storage

Azure Blob Storage 

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area 

Network

Kubernetes API

Operator

Backup Pod

CSI

Cloud storagePercona Server for MongoDB Namespace

Multiple backup storages

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-backup-mongodb
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://min.io/
https://azure.microsoft.com/en-us/services/storage/blobs/


Starting with version 1.20.0, the Operator natively supports multiple backup storages , inheriting this feature from Percona Backup for MongoDB (PBM). This
means you don’t have to wait till the Operator reconDgures a cluster after you select a different storage for a backup or a restore. And you can make a point-in-
time recovery from any backup stored on any storage - PBM and the Operator maintain the data consistency for you.

Find more information in the Multiple storages for backups chapter.

Backup types

Backup
type

Version
added

Status Description Important considerations

Full logical Initial GA Queries Percona Server for MongoDB for
database data and writes this data to the remote
storage

- Uses less storage but is slower than physical backups
- Supports selective restore since 1.18.0
- Supports point-in-time recovery
- Incompatible for restores with backups made with Operator versions
before 1.9.0. Make a new backup after the upgrade to the Operator 1.9.0.

Full
physical

1.14.0 GA (1.16.0) Copies physical Dles from MongoDB dbPath
data directory to remote storage

- Faster backup/restore than logical
- Better for large datasets
- Supports point-in-time recovery since 1.15.0

Physical
incremental

1.20.0 Tech
preview

Copies only data changed after the previous
backup

- Speeds up backup/restore
- Reduces network load and storage consumption
- Requires a base incremental backup to start the incremental chain
- Base backup and increments must bet taken from the same node
- New base backup is needed if a node is down or if the cluster was
restored from a backup

https://docs.percona.com/percona-backup-mongodb/features/multi-storage.html


8.1.2 Configure storage for backups
You can conDgure storage for backups in the backup.storages  subsection of the Custom Resource, using the deploy/cr.yaml  conDguration Dle.

Remote storage for backups has the technical preview status.

You should also create the Kubernetes Secret  object with credentials needed to access the storage.

Amazon S3 or S3-compatible storage

1. To store backups on the Amazon S3, you need to create a Secret with the following values:

the metadata.name  key is the name which you will further use to refer your Kubernetes Secret,

the data.AWS_ACCESS_KEY_ID  and data.AWS_SECRET_ACCESS_KEY  keys are base64-encoded credentials used to access the storage (obviously these
keys should contain proper values to make the access possible).

Create the Secrets Dle with these base64-encoded keys following the deploy/backup-s3.yaml  example:

You can use the following command to get a base64-encoded string from a plain text one:

Once the editing is over, create the Kubernetes Secret object as follows:

Put the data needed to access the S3-compatible cloud into the backup.storages  subsection of the Custom Resource.

2. storages.<NAME>.type  should be set to s3  (substitute the part with some arbitrary name you will later use to refer this storage when making backups
and restores).

storages.<NAME>.s3.credentialsSecret  key should be set to the name used to refer your Kubernetes Secret ( my-cluster-name-backup-s3  in the
last example).

storages.<NAME>.s3.bucket  and storages.<NAME>.s3.region  should contain the S3 bucket and region. Also you can use storages.
<NAME>.s3.prefix  option to specify the path (sub-folder) to the backups inside the S3 bucket. If preDx is not set, backups are stored in the root
directory.

if you use some S3-compatible storage instead of the original Amazon S3, add the endpointURL  key in the s3  subsection, which should point to the
actual cloud used for backups. This value and is speciDc to the cloud provider. For example, using Google Cloud  involves the following  endpointUrl:

The options within the storages.<NAME>.s3  subsection are further explained in the Operator Custom Resource options.

Here is an example of the deploy/cr.yaml  conDguration Dle which conDgures Amazon S3 storage for backups:

Warning

apiVersion: v1
kind: Secret
metadata:
  name: my-cluster-name-backup-s3
type: Opaque
data:
  AWS_ACCESS_KEY_ID: UkVQTEFDRS1XSVRILUFXUy1BQ0NFU1MtS0VZ
  AWS_SECRET_ACCESS_KEY: UkVQTEFDRS1XSVRILUFXUy1TRUNSRVQtS0VZ

Note

in Linux

in macOS

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

$ kubectl apply -f deploy/backup-s3.yaml

endpointUrl: https://storage.googleapis.com

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup-s3.yaml
https://docs.min.io/docs/aws-cli-with-minio.html
https://cloud.google.com/
https://storage.googleapis.com/
http://localhost:8001/percona-operator-for-mongodb/print_page.html#operator-operator-backup-section
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml


Finally, make sure that your storage has enough resources to store backups, which is especially important in the case of large databases. It is clear that you need
enough free space on the storage. Beside that, S3 storage upload limitats  include the maximum number 10000 parts, and backing up large data will result in
larger chunk sizes, which in turn may cause S3 server to run out of RAM, especially within the default memory limits.

Automating access to Amazon s3 based on IAM roles

Using AWS EC2 instances for backups makes it possible to automate access to AWS S3 buckets based on Identity Access Management (IAM) roles  for
Service Accounts with no need to specify the S3 credentials explicitly.

You can use either make and use the IAM instance proFle, or conDgure IAM roles for Service Accounts (both ways heavily rely on AWS speciDcs, and need
following the o`cial Amazon documentation to be conDgured).

...
backup:
  ...
  storages:
    s3-us-west:
      type: s3
      s3:
        bucket: S3-BACKUP-BUCKET-NAME-HERE
        region: us-west-2
        credentialsSecret: my-cluster-name-backup-s3
  ...

Using IAM instance pro`le

Following steps are needed to turn this feature on:

1. Create the IAM instance proDle  and the permission policy within where you specify the access level that grants the access to S3 buckets.

2. Attach the IAM proDle to an EC2 instance.

3. ConDgure an S3 storage bucket in the Custom Resource and verify the connection from the EC2 instance to it.

4. Do not provide s3.credentialsSecret  for the storage in deploy/cr.yaml .

Using IAM role for service account

IRSA  is the native way for the cluster running on Amazon Elastic Kubernetes Service (AWS EKS) to access the AWS API using permissions conDgured in AWS
IAM roles.

Assuming that you have deployed the MongoDB Operator and the database cluster on EKS, following our installation steps, and your EKS cluster has OpenID
Connect issuer URL (OIDC)  enabled, the the high-level steps to conDgure it are the following:

1. Create an IAM role for your OIDC, and attach to the created role the policy that deDnes the access to an S3 bucket. See o`cial Amazon documentation 
for details.

2. Find out service accounts used for the Operator and for the database cluster. Service account for the Operator is percona-server-mongodb-operator  (it
is set by the serviceAccountName  key in the deploy/operator.yaml  or deploy/bundle.yaml  manifest) The cluster’s default account is default  (it
can be set with serviceAccountName  Custom Resource option in the replsets , sharding.configsvrReplSet , and sharding.mongos  subsections of
the deploy/cr.yaml  manifest).

3. Annotate both service accounts with the needed IAM roles. The commands should look as follows:

Don’t forget to substitute the <operator namespace>  and <cluster namespace>  placeholders with the real namespaces, and use your IAM role instead
of the eks.amazonaws.com/role-arn: arn:aws:iam::111122223333:role/my-role  example.

4. ConDgure an S3 storage bucket in the Custom Resource and verify the connection from the EC2 instance to it. Do not provide s3.credentialsSecret  for
the storage in deploy/cr.yaml .

$ kubectl -n <cluster namespace> annotate serviceaccount default eks.amazonaws.com/role-arn: 
arn:aws:iam::111122223333:role/my-role --overwrite
$ kubectl -n <operator namespace> annotate serviceaccount percona-server-mongodb-operator eks.amazonaws.com/role-arn: 
arn:aws:iam::111122223333:role/my-role --overwrite

https://docs.aws.amazon.com/AmazonS3/latest/userguide/qfacts.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://localhost:8001/percona-operator-for-mongodb/print_page.html#backups-storage-bucket
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html
http://localhost:8001/percona-operator-for-mongodb/print_page.html#backups-storage-bucket


If IRSA-related credentials are deDned, they have the priority over any IAM instance proDle. S3 credentials in a secret, if present, override any IRSA/IAM instance proDle related
credentials and are used for authentication instead.

Google Cloud storage
To use Google Cloud Storage (GCS)  as an object store for backups, you need the following information:

a GCS bucket name. Refer to the GCS bucket naming guidelines  for bucket name requirements

authentication keys for your service account in JSON format.

You can still use the S3-compatible implementation of GCS with HMAC. Refer to the Amazon S3 storage setup section for steps.

However, we don’t recommend their usage due to a known issue in PBM  and encourage you to switch to using service accounts keys after the upgrade to the Operator version
1.21.0.

ConSguration steps

Note

Note

Create a service account , if you don’t have it already.1

Add JSON service keys for the service account . As the result a service account key Dle in JSON format with the private key and related information is
automatically downloaded on your machine.

2

Encode your keys in base64 format. You need to encode the service account email and the private key. You can get these values from the service account
key Dle you downloaded when you created the service account keys.

The following command shows how to encode a private key. Replace the placeholder with your private key and service account email:

3

echo -n "-----BEGIN PRIVATE KEY-----\nPRIVATE_KEY\n-----END PRIVATE KEY-----\n" | base64 

Create the Kubernetes Secret conDguration Dle and specify the encoded GCS credentials within:4

gcp-cs-secret.yaml

apiVersion: v1
kind: Secret
metadata:
  name: gcp-cs-secret-key
type: Opaque
data:
  GCS_CLIENT_EMAIL: base_64_encoded_email
  GCS_PRIVATE_KEY: base_64_encoded_key

Create the Kubernetes Secrets object. Replace the <namespace>  placeholder with your value:5

$ kubectl apply -f gcp-cs-secret.yaml -n <namespace>

ConDgure the GCS storage in the deploy/cr.yaml  Custom Resource. Specify the following information:

Set storages.<NAME>.type  to gcs  (substitute the part with some arbitrary name you will later use to refer this storage when making backups and
restores).

Specify the bucket name for the storages.<NAME>.gcs.bucket  option

Specify the Secrets object name you created for the storages.<NAME>.gcs.credentialsSecret  option

6

→

→

→

https://cloud.google.com/storage
https://cloud.google.com/storage/docs/buckets#naming
https://docs.percona.com/percona-backup-mongodb/release-notes/2.11.0.html#known-limitations-for-using-hmac-keys-on-gcs
https://cloud.google.com/iam/docs/service-accounts-create#iam-service-accounts-create-console
https://cloud.google.com/iam/docs/creating-managing-service-account-keys


Microsoft Azure Blob storage

1. To store backups on the Azure Blob storage, you need to create a Secret with the following values:

the metadata.name  key is the name which you wll further use to refer your Kubernetes Secret,

the data.AZURE_STORAGE_ACCOUNT_NAME  and data.AZURE_STORAGE_ACCOUNT_KEY  keys are base64-encoded credentials used to access the storage
(obviously these keys should contain proper values to make the access possible).

Create the Secrets Dle with these base64-encoded keys following the deploy/backup-azure.yaml  example:

You can use the following command to get a base64-encoded string from a plain text one:

Once the editing is over, create the Kubernetes Secret object as follows:

2. Put the data needed to access the Azure Blob storage into the backup.storages  subsection of the Custom Resource.

storages.<NAME>.type  should be set to azure  (substitute the part with some arbitrary name you will later use to refer this storage when making
backups and restores).

storages.<NAME>.azure.credentialsSecret  key should be set to the name used to refer your Kubernetes Secret ( my-cluster-azure-secret  in the
last example).

storages.<NAME>.azure.container  option should contain the name of the Azure container. Also you can use storages.<NAME>.azure.prefix
option to specify the path (sub-folder) to the backups inside the container. If preDx is not set, backups are stored in the root directory of the container.

These and other options within the storages.<NAME>.azure  subsection are further described in the Operator Custom Resource options.

Here is an example of the deploy/cr.yaml  conDguration Dle which conDgures Azure Blob storage for backups:

backup:
  storages:
    gcp-cs:
      type: gcs
      gcs:
        bucket: < GCS-BACKUP-BUCKET-NAME-HERE>
        credentialsSecret: gcp-cs-secret

Apply the conDguration:7

$ kubectl apply -f deploy/cr.yaml -n <namespace>

apiVersion: v1
kind: Secret
metadata:
  name: my-cluster-azure-secret
type: Opaque
data:
  AZURE_STORAGE_ACCOUNT_NAME: UkVQTEFDRS1XSVRILUFXUy1BQ0NFU1MtS0VZ
  AZURE_STORAGE_ACCOUNT_KEY: UkVQTEFDRS1XSVRILUFXUy1TRUNSRVQtS0VZ

Note

in Linux

in macOS

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

$ kubectl apply -f deploy/backup-azure.yaml

http://localhost:8001/percona-operator-for-mongodb/print_page.html#operator-operator-backup-section
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml


Remote file server
You can use the fileystem  backup storage type to mount a remote Fle server to a local directory as a sidecar volume, and make Percona Backup for MongoDB
use this directory as a storage for backups.

The approach is based on using common Network File System (NFS) protocol . Particularly, this storage type is useful in network-restricted environments
without S3-compatible storage, or in cases with a non-standard storage service that still supports NFS access.

1. Add the remote storage as a sidecar volume in the replset  section of the Custom Resource (and also in configsvrReplSet  in case of a sharded cluster).
You will need to specify the server hostname and some directory on it, as in the following example:

The backup-nfs-vol  name speciDed above will be used to refer this sidecar volume in the backup section.

2. Now put the mount point (the local directory path to which the remote storage will be mounted) and the name of your sidecar volume into the
backup.volumeMounts  subsection of the Custom Resource:

3. Finally, storage of the filesystem  type needs to be conDgured in the backup.storages  subsection. It needs only the mount point:

...
backup:
  ...
  storages:
    azure-blob:
      type: azure
      azure:
        container: <your-container-name>
        prefix: psmdb
        credentialsSecret: my-cluster-azure-secret
      ...

replsets:
- name: rs0
  ...
  sidecarVolumes:
  - name: backup-nfs-vol
    nfs:
      server: "nfs-service.storage.svc.cluster.local"
      path: "/psmdb-my-cluster-name-rs0"
  ...

backup:
  ...
  volumeMounts:
  - mountPath: /mnt/nfs/
    name: backup-nfs-vol
  ...

backup:
  enabled: true
  ...
  storages:
    backup-nfs:
      type: filesystem
      filesystem:
        path: /mnt/nfs/

https://en.wikipedia.org/wiki/Network_File_System


8.1.3 Multiple storages for backups
You can deDne several storage locations for backups in the Operator. However, previously you were limited to only a single storage for point-in-time recovery,
because Percona Backup for MongoDB (PBM) couldn’t maintain oplog consistency across multiple storages. Also, you had to wait for the Operator to
reconDgure the cluster and sync metadata after you make the next backup or a restore to a different storage.

This behavior is improved. The Operator differentiates the storages as the main storage and proDles. The difference between them is that the Operator uses the
main storage to save both backups and oplog chunks for point-in-time recovery. ProDles are used only for backups. This is done for data consistency and to
enable point-in-time recovery from a backup on any storage.

Define the main storage
When you conDgure only one storage, the Operator automatically uses it as the main one until you add more. When you add another storage, you must mark
which one is the main using the main: true  _ag in the deploy/cr.yaml  Custom Resource manifest.

Note that you can have only one main storage. All other storages are added as proDles.

To check the list of proDles, connect to the database Pod and run the pbm profile list  command. For example, for the cluster cluster1 , the command
looks as follows:

You can run other proDle management commands  in the same way.

Change the main storage
You can change the main storage by reassigning the main:true  _ag for another one. The Operator then:

Resyncs the metadata for the new main storage

Deletes the proDle for it

Adds the previous main storage as a proDle

Pass storage configuration via restore objects
Usually you deDne the storage conDguration within the deploy/cr.yaml  Custom Resource manifest. You can also pass it to the Operator within the
backupSource  option of a Restore object. For example, when you restore the failed site after a disaster. The Operator then checks the current conDguration and:

If there is no storage conDgured there, it uses the one from the Restore object as the main storage. After the restore it reverts the PBM conDguration. You
must deDne the main storage in the deploy/cr.yaml  Dle to run further backups.

If the deploy/cr.yaml  Custom Resource manifest has the storage conDgured and it differs from the one from the Restore object, the Operator adds the
storage from the Restore object as a proDle.

Backup metadata resync
The Operator resyncs the metadata in the following cases:

For the main storage:

When the main storage changes

When you manually start a resync using the pbm config --force resync

For the proDle storage:

When you start a restore from a backup on a proDle

When you manually resync the metadata on a proDle using the pbm profile sync <storage-name>  command

storages:
  s3-us-west:
    main: true
    type: s3

$ kubectl exec cluster1-rs0-0 -c backup-agent -- pbm profile list

https://docs.percona.com/percona-backup-mongodb/reference/pbm-commands.html#pbm-profile-add


For the main storage and proDles:

When you added an annotation percona.com/resync-pbm=true  to the deploy/cr.yaml  Custom Resource manifest.

Note that resync is a resource consuming task and we don’t recommend to run it manually. Read more when you need to run it in PBM documentation 

The improved support for multiple backup storages brings the following beneDts:

Enables you to make a point-in-time recovery from any storage with guaranteed data consistency

Reduces the load on the cluster for reconDguration when the storage for a next backup changes

Upgrade considerations
You must specify the main storage during the upgrade. If you use a single storage, it will automatically be marked as main in the Custom Resource manifest. If
you use multiple storages, you must deDne one of them as main.

The following command shows how to set the s3-us-west  storage as the main one:

For more information about the upgrades, see the Update documentation

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
    "spec": {
      "crVersion": "1.20.0",
      "image": "percona/percona-server-mongodb:7.0.18-11",
      "backup": {
        "image": "percona/percona-backup-mongodb:2.9.1",
        "storages": {
          "s3-us-west": {
            "main": true
          }
        }
      },
      "pmm": {
        "image": "percona/pmm-client:2.44.1"
      }
    }
  }'

https://docs.percona.com/percona-backup-mongodb/reference/config.html#syncronize-configuration


8.1.4 Storing operations logs for point-in-time recovery
Point-in-time recovery enables you to roll back your cluster to a speciDc date and time. Starting from the Operator version 1.15.0, you can do a point-in-time
recovery from both logical and physical backups.

During point-in-time recovery, the Operator Drst restores a backup and then applies an operations log (oplog) on top of it. The oplog is the changes that occurred
to the operations up to the deDned moment.

Preconditions for point-in-time recovery

1. To make a point-in-time recovery, the Operator must start saving oplog events. Set the backup.pitr.enabled key in the deploy/cr.yaml  conDguration Dle to
enable saving oplog:

2. You must have a full backup to use point-in-time recovery. Without a full backup, Percona Backup for MongoDB will not upload operations logs. You must
have a full backup for a new cluster and for a cluster that you restored from a backup.

After you enabled point-in-time recovery, it takes 10 minutes for a Drst oplog chunk to be uploaded. The default time period between uploads is 10 minutes. You
can adjust this time by setting the new duration for the backup.pitr.oplogSpanMin  option.

PBM saves the oplog to the cloud storage.

Point-in-time recovery with multiple storages

backup:
  ...
  pitr:
    enabled: true

Version 1.20.0 and above

The Operator natively supports multiple storages for backups inheriting this functionality from Percona Backup for MongoDB. This allows you to enable point-in-
time recovery and make backups on a storage of your choice. PBM saves oplog only to the main storage to ensure data consistency for all backups on all
storages. As a result, you can make a point-in-time restore from any backup on any storage.

Version 1.19.1 and earlier

You must have a single storage deDned in the spec.backup.storages option to enable point-in-time recovery. This is because PBM writes oplog to the same
bucket where the backup snapshot is saved.

If you deDned several storages and try to enable point-in-time recovery, PBM won’t know where to save oplog and can’t therefore guarantee data consistency for
the restore. Therefore, point-in-time recovery is not allowed for multiple storages. You will see the error message in the Operator logs.



8.1.5 Make a backup



8.1.5.1 Making scheduled backups
You can automate the backup process with scheduled backups. DeDne a schedule and the Operator runs backups automatically according to it. This provides
reliability and e`ciency to your backups strategy and ensures your data is timely and regularly backed up with no gaps.

Considerations

1. The percona.com/delete-backup  Dnalizer applies for an incremental base backup but is ignored for increments. This means that when an incremental
base backup is deleted, PBM also deletes all increments that derived from it from the backup storage. There is the limitation that the Backup resource for
the base incremental backup is deleted but the Backup resources for increments remain in the Operator. This is because the Operator doesn’t control their
deletion outsourcing this task to PBM. This limitation will be Dxed in future releases.

2. Starting with Operator version 1.17.0, the backup label changed from ancestor  to percona.com/backup-ancestor . The Operator automatically deletes
backups with the new percona.com/backup-ancestor  label, but it does not remove older backups that use the ancestor  label. To free up storage, you
need to manually delete backups created with Operator versions before 1.17.0. For instructions, see Delete backups.

To conDgure scheduled backups, modify the backups  section of the deploy/cr.yaml  Custom Resource manifest. Specify the following conDguration:

1. backup.enabled  - set to true ,

2. backup.storages  subsection - deDne at least one conDgured storage.

3. backup.tasks  subsection - specify the following conDguration:

name  - specify a backup name. You will need this name when you restore from this backup.

schedule  - specify the desired backup schedule in crontab format ).

enabled  - set this key to true . This enables making the <backup name>  backup along with the speciDed schedule.

storageName  - specify the name of your already conDgured storage.

retention  - conDgure the retention policy: how many backups to keep in the storage This setting is optional. It applies to base incremental backups but
is ignored for increments.

type  - specify what type of backup to make. If you leave it empty, the Operator makes a logical backup by default.

Examples

Logical

This example shows how to set up backups to run every Saturday night and store them in Amazon S3:

Physical

This example shows how to set up backups to run every Saturday night and store them in Amazon S3:

...
backup:
  enabled: true
  storages:
    s3-us-west:
      type: s3
      s3:
        bucket: S3-BACKUP-BUCKET-NAME-HERE
        region: us-west-2
        credentialsSecret: my-cluster-name-backup-s3
  tasks:
   - name: "sat-night-backup"
     enabled: true
     schedule: "0 0 * * 6"
     retention:
        count: 3
        type: count
        deleteFromStorage: true
     type: logical
     storageName: s3-us-west
  ...

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://en.wikipedia.org/wiki/Cron


Incremental

To run incremental backups, consider the following:

1. You must use the same storage for the base backup and subsequent incremental ones

2. The percona.com/delete-backup  Dnalizer and the .spec.backup.tasks.[].keep  option are is considered for incremental base backup but are ignored
for increments. This means that when a base backup is deleted, PBM deletes all increments that derive from it.

There is the limitation that the Backup resource for the base incremental backup is deleted but the Backup resources for increments remain in the Operator. This
is because the Operator doesn’t control their deletion outsourcing this task to PBM. This limitation will be Dxed in future releases.

This example shows how to set up incremental base backups to run every Sunday at 5 a.m and subsequent incremental backups every night at 1:00 a.m. and
store them in Amazon S3:

...
backup:
  enabled: true
  storages:
    s3-us-west:
      type: s3
      s3:
        bucket: S3-BACKUP-BUCKET-NAME-HERE
        region: us-west-2
        credentialsSecret: my-cluster-name-backup-s3
  tasks:
   - name: "sat-night-backup"
     enabled: true
     schedule: "0 0 * * 6"
     retention:
        count: 3
        type: count
        deleteFromStorage: true
     type: physical
     storageName: s3-us-west
  ...

...
backup:
  enabled: true
  storages:
    s3-us-west:
      type: s3
      s3:
        bucket: S3-BACKUP-BUCKET-NAME-HERE
        region: us-west-2
        credentialsSecret: my-cluster-name-backup-s3
  tasks:
   - name: weekly-s3-us-west-incremental
     enabled: true
     schedule: "0 1 * * *"
     type: incremental
     storageName: s3-us-west
     compressionType: gzip
     compressionLevel: 6
   - name: weekly-s3-us-west-incremental-base
     enabled: true
     schedule: "0 5 * * 0"
     retention:
        count: 3
        type: count
        deleteFromStorage: true
     type: incremental-base
     storageName: s3-us-west
     compressionType: gzip
     compressionLevel: 6
  ...



Restore to a new Kubernetes environment
To restore from a backup to a new Kubernetes-based environment, you must create a Secrets object there with the same user passwords as in the original
cluster.

Find the Secrets name object on the source cluster in the spec.secrets  key in the `deploy/cr.yaml. Use this name to recreate the Secrets on the target cluster.

Find more details about secrets in System Users.



8.1.5.2 Making on-demand backups
An on-demand backup is a backup that you start manually at any time. You create a Backup resource and the Operator uses it to make a backup. A backup can
be any of the supported backup types.

If you want to run backups automatically, according to the schedule, see Make scheduled backups tutorial.

Here’s what you need to do to run on-demand backups:

Modify the Custom Resource manifest

Create a Backup resource
To create a Backup resource, you need a special custom resource manifest. The deploy/backup/backup.yaml  is the example manifest that you can use.

Edit the deploy/cr.yaml  conDguration Dle and specify the following conDguration:

Set the backup.enabled  key to true ,

Check that you have deDned at least one conDgured storage in the backup.storages  subsection.

1

→

→

Apply the changes. Don’t forget to replace the <namespace>  placeholder with your namespace:2

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Specify the following conDguration:

metadata.name  is the name of the backup. You will need this name when you restore from this backup. The default name is backup1 .

spec.clusterName  is the name of your cluster (prior to the Operator version 1.12.0 this key was named spec.psmdbCluster ). Run kubectl get 
psmdb -n <namespace>  to Dnd out the cluster name.

spec.storageName  is the name of your already conDgured storage.

spec.type  is the backup type. If you leave it empty, the Operator makes a logical backup by default.

Examples

1

→

→

→

→

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/backup.yaml


Logical

Physical

Incremental

To make incremental backups, consider the following:

There is the limitation that the Backup resource for the base incremental backup is deleted but the Backup resources for increments remain in the Operator.
This is because the Operator doesn’t control their deletion outsourcing this task to PBM. This limitation will be Dxed in future releases.

Here’s the conDguration example for the base incremental backup

This conDguration example is for subsequent incremental backups:

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBBackup
metadata:
  finalizers:
  - percona.com/delete-backup
  name: backup1
spec:
  clusterName: my-cluster-name
  storageName: s3-us-west
  type: logical

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBBackup
metadata:
  finalizers:
  - percona.com/delete-backup
  name: backup1
spec:
  clusterName: my-cluster-name
  storageName: s3-us-west
  type: physical

Make the incremental base backup Drst. The Operator needs the base to start the chain of increments and save only changes from previous backup.1

Use the same storage for base backup and increments.2

The percona.com/delete-backup  Dnalizer is considered for incremental base backup but is ignored for increments. This means that when a base
backup is deleted, PBM deletes all increments that derive from it.

3

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBBackup
metadata:
  finalizers:
  - percona.com/delete-backup
  name: backup1
spec:
  clusterName: my-cluster-name
  storageName: s3-us-west
  type: incremental-base

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBBackup
metadata:
  name: backup1
spec:
  clusterName: my-cluster-name
  storageName: s3-us-west
  type: incremental

Apply the backup.yaml  manifest to start a backup:2

$ kubectl apply -f deploy/backup/backup.yaml

You can track the backup process with the PerconaServerMongoDBBackup  Custom Resource as follows:3



Troubleshooting
If you have any issues with a backup, here’s how you can troubleshoot it:

1. View information about a backup:

2. Check logs from the backup-agent container of the appropriate Pod as follows. Find the Pod name in the pbm Pod  Deld in the output from the previous step.
Or use the following command to get the Pod name:

Now connect to the backup-agent  of this Pod:

3. Access the same container via ssh and carry on Percona Backup for MongoDB diagnostics .

It should show the status as READY  when the backup process is over.

$ kubectl get psmdb-backup

Expected output

NAME      CLUSTER           STORAGE      DESTINATION                                  TYPE      SIZE       STATUS   COMPLETED   AGE
backup1   my-cluster-name   s3-us-west   s3://my-bucket/2025-09-23T10:34:59Z   logical   105.44MB   ready    43m       43m

$ kubectl describe psmdb-backup backup1

Expected output

Name:         backup1
Namespace:    my-namespace
Labels:       <none>
Annotations:  <none>
API Version:  psmdb.percona.com/v1
Kind:         PerconaServerMongoDBBackup
Metadata:
  Creation Timestamp:  2025-04-22T11:32:21Z
  Finalizers:
    percona.com/delete-backup
  Generation:        1
  Resource Version:  136319
  UID:               46670473-4fd0-465d-b944-1be3717485a0
Spec:
  Cluster Name:  my-cluster-name
  Storage Name:  gcp-cs
  Type:          incremental-base
Status:
  Completed:        2025-04-22T11:32:42Z
  Destination:      s3://my-bucket/demand-backup-incremental/2025-04-22T11:32:26Z
  Last Transition:  2025-04-22T11:32:42Z
  Pbm Name:         2025-04-22T11:32:26Z
  Pbm Pod:          my-cluster-name-rs0-2.my-cluster-name-rs0.demand-backup-incremental-10277.svc.cluster.local:27017
  Pbm Pods:
    rs0:  my-cluster-name-rs0-2.my-cluster-name-rs0.demand-backup-incremental-10277.svc.cluster.local:27017
  Replset Names:
    rs0
  s3:
    Bucket:              my-bucket
    Credentials Secret:  gcp-cs-secret
    Endpoint URL:        https://storage.googleapis.com
    Prefix:              demand-backup-incremental
    Region:              us-east-1
    Server Side Encryption:
  Start:         2025-04-22T11:32:26Z
  State:         ready
  Storage Name:  gcp-cs
  Type:          incremental-base

$ kubectl get psmdb-backup -o yaml | grep pbmPod

$ kubectl logs pod/my-cluster-name-rs0 -c backup-agent

https://docs.percona.com/percona-backup-mongodb/troubleshoot/troubleshooting.html


Restore to a new Kubernetes environment
To restore from a backup to a new Kubernetes-based environment, you must create a Secrets object there with the same user passwords as in the original
cluster.

Find the Secrets name object on the source cluster in the spec.secrets  key in the `deploy/cr.yaml. Use this name to recreate the Secrets on the target cluster.

Find more details about secrets in System Users.



8.1.6 Enable server-side encryption for backups
Encrypting database backups is done separately for physical and logical backups. Physical backups are encrypted if data-at-rest encryption is turned on. Logical
backups need to be encrypted on the cloud.

There is a possibility to enable server-side encryption  for backups stored on S3. Starting from the version 1.15.0, the Operator supports Server Side
Encryption either with AWS Key Management Service (KMS) , or just encrypt/decrypt backups with AES-256 encryption algorithm with any S3-compatible
storage.

To enable server-side encryption for backups, use backup.storages.<storage-name>.s3.serverSideEncryption section in the deploy/cr.yaml  conDguration Dle.

Encryption with keys stored in AWS KMS
To use the server-side AWS KMS encryption, specify the ID of your customer-managed key  and other needed options as follows:

https://docs.percona.com/percona-backup-mongodb/details/storage-configuration.html#server-side-encryption
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/find-cmk-id-arn.html


Encryption with localy-stored keys on any S3-compatible storage
The Operator also supports server-side encryption with customer-provided keys that are stored on the client side. During the backup/restore process, encryption
key will be provided by the Operator as part of the requests to the S3 storage, and the S3 storage will use them to encrypt/decrypt the data with the AES-256
encryption algorithm. This allows to use server-side encryption on S3-compatible storages different from AWS KMS (the feature was tested with the AWS  and
MinIO  storages).

To use the server-side encryption with locally-stored keys, specify your encryption key and other needed options:

with kmsKeyID in Custom Resource

Set the following Custom Resource options in the deploy/cr.yaml  conDguration Dle:

Here <kms_key_ID>  should be substituted with the ID of your customer-managed key  stored in the AWS KMS. It should look similar to the following example
value: 128887dd-d583-43f2-b3f9-d12036d32b12 .

with kmsKeyID in Secret object

You can avoid storing your kmsKeyID  in Custom Resource, and put it into a dedicated Secrets object. DeDne your secret in YAML as follows:

Here <kms_key_ID>  should be substituted with the ID of your customer-managed key  stored in the AWS KMS. It should look similar to the following example
value: 128887dd-d583-43f2-b3f9-d12036d32b12 .

When the YAML Dle is ready, apply it to create the Secret:

After creating the Secret, set the following Custom Resource options in the deploy/cr.yaml  conDguration Dle:

backup:
  ...
  storages:
    my-s3:
      type: s3
      s3:
        bucket: my-backup-bucket
        serverSideEncryption:
          kmsKeyID: <kms_key_ID>
          sseAlgorithm: aws:kms

deploy/sse-secret.yaml

apiVersion: v1
kind: Secret
metadata:
  name: my-cluster-name-sse
type: Opaque
stringData:
  KMS_KEY_ID: <kms_key_ID>

$ kubectl create -f deploy/sse-secret.yaml

secrets:
  ...
  sse: my-cluster-name-sse
...
backup:
  ...
  storages:
    my-s3:
      type: s3
      s3:
        bucket: my-backup-bucket
        serverSideEncryption:
          sseAlgorithm: aws:kms

https://aws.amazon.com/
https://min.io/
https://docs.aws.amazon.com/kms/latest/developerguide/find-cmk-id-arn.html
https://docs.aws.amazon.com/kms/latest/developerguide/find-cmk-id-arn.html


You can use the following command to get a base64-encoded string from a plain text one:

with encryption key in Custom Resource

Set the following Custom Resource options in the deploy/cr.yaml  conDguration Dle:

Here <your_encryption_key_in_base64>  should be substituted with the actual encryption key encoded in base64.

with encryption key in Secret object

You can avoid storing your encryption key in Custom Resource, and put it into a dedicated Secrets object. DeDne your secret in YAML as follows:

Here <your_encryption_key_in_base64>  should be substituted with the actual encryption key encoded in base64.

When the YAML Dle is ready, apply it to create the Secret:

After creating the Secret, set the following Custom Resource options in the deploy/cr.yaml  conDguration Dle:

backup:
  ...
  storages:
    my-s3:
      type: s3
      s3:
        bucket: my-backup-bucket
        serverSideEncryption:
          sseCustomerAlgorithm: AES256
          sseCustomerKey: <your_encryption_key_in_base64>
    ...

deploy/sse-secret.yaml

apiVersion: v1
kind: Secret
metadata:
  name: my-cluster-name-sse
type: Opaque
stringData:
  SSE_CUSTOMER_KEY: <your_encryption_key_in_base64>

$ kubectl create -f deploy/sse-secret.yaml

secrets:
  ...
  sse: my-cluster-name-sse
...
backup:
  ...
  storages:
    my-s3:
      type: s3
      s3:
        bucket: my-backup-bucket
        serverSideEncryption:
          sseCustomerAlgorithm: AES256
    ...

Note

in Linux

in macOS

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64



8.1.7 Restore from a backup



8.1.7.1 Restore the cluster from a previously saved backup
You can restore from a backup as follows:

On the same cluster where you made a backup

On a new cluster deployed in a different Kubernetes-based environment.

This document focuses on the restore to the same cluster.

Restore scenarios
You can make the following restores:

Restore to a speciDc point in time. A precondition for this restore is to enable saving oplog operations

Restore from a full backup

Selective restore from a full logical backup

For either type of a restore you need to create a Restore object using the deploy/backup/restore.yaml   manifest.

Considerations
1. Check PBM’s considerations  to prevent MongoDB clients from accessing the database when the restore is in progress.

2. During the restore, the Operator may delete and recreate Pods. This may cause downtime. The downtime duration depends on the restore type and the
database deployment:

Logical restore in an unsharded cluster results causes downtime for the duration of the data restore. No Pods are deleted or recreated

Logical restore in a sharded cluster causes downtime for the duration of the data restore and the time needed to refresh sharding metadata on mongos .
This results in deleting and recreating only mongos  Pods.

Physical restore causes downtime for the entire period required to restore the data and refresh the sharding metadata on mongos . The Operator deletes
and recreates all Pods - replica set, conDg server replica set (if present) and mongos Pods.

Before you begin
1. Make sure that the cluster is running.

2. Export your namespace as an environment variable. Replace the <namespace>  placeholder with your value:

1. Get the backup information. List the backups using this command:

2. Get cluster information. List available clusters using this command:

Restore from a full backup
To restore your Percona Server for MongoDB cluster from a backup, deDne a PerconaServerMongoDBRestore  custom resource. Set the following keys:

set spec.clusterName  key to the name of the target cluster to restore the backup on,

set spec.backupName  key to the name of your backup. This is the value from the output of the kubectl get psmdb-backup  command.

Pass this conDguration to the Operator:

$ export NAMESPACE = <namespace>

$ kubectl get psmdb-backup -n $NAMESPACE

$ kubectl get psmdb -n $NAMESPACE

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml
https://docs.percona.com/percona-backup-mongodb/usage/restore.html#considerations


Make a point-in-time recovery

1. Check a time to restore for a backup. Use the command below to Dnd the latest restorable timestamp:

2. Modify the deploy/backup/restore.yaml  manifest and specify the following conDguration:

set the spec.clusterName  key to the name of your cluster. When restoring to the same cluster where the backup was created, the cluster name will be
identical in both the Backup and Restore objects.

set the spec.backupName  key to the name of your backup

conDgure point-in-time recovery settings in the pitr  section:

type  - specify one of the following options

date  - roll back to a speciDc date

latest  - recover to the latest possible transaction

date  - specify the target datetime in the format YYYY-MM-DD HH:MM:SS  when type  is set to date

Here is the example conDguration of the restore.yaml  Dle:

3. Pass this conDguration to the Operator.

via the YAML manifest

1. Edit the deploy/backup/restore.yaml  Dle and specify the following keys:

2. Start the restore with this command:

via the command line

Instead of storing restore settings in a separate Dle, you can pass them directly to the kubectl apply  command as follows:

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBRestore
metadata:
  name: restore1
spec:
  clusterName: my-cluster-name
  backupName: backup1

$ kubectl apply -f deploy/backup/restore.yaml -n $NAMESPACE

$ cat <<EOF | kubectl apply -n $NAMESPACE -f-
apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBRestore
metadata:
  name: restore1
spec:
  clusterName: my-cluster-name
  backupName: backup1
EOF -n $NAMESPACE

$ kubectl get psmdb-backup <backup_name> -n $NAMESPACE -o jsonpath='{.status.latestRestorableTime}'

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/backup/restore.yaml


Selective restore
Starting with the version 1.18.0, you can restore a desired subset of data from a full logical backup. Selective logical backups are not yet supported.

Selective restores have a number of limitations. Learn more about the current selective restore limitations  in Percona Backup for MongoDB documentation.

Selective restores are controlled by the additional selective  section in the PerconaServerMongoDBRestore  Custom Resource. There you can specify a
speciDc database or a collection that you wish to restore:

You can specify several “namespaces” (subsets of data) as a list for the selective.namespaces  Deld. You can specify a namespace as follows:

as a pair of database and collection names to restore just this database and collection. The format is db1.collection1

as a database name with a wildcard to restore everything from the speciDc database. The format is database_name.*

as a single star “*” to restore all databases and collections

Also, you can use selective.withUsersAndRoles  set to true  to restore a custom database with users and roles from a full backup. Read more about this
functionality in PBM documentation .

Restore from a backup with a prefix in a bucket path
If you deDned a preDx (a folder) in a bucket where you store backups, you must specify this preDx in the spec.backupSource  subsection of the restore
conDguration.

via the YAML manifest

a. Edit the deploy/backup/restore.yaml  Dle.

b. Start the restore with this command:

via the command line

You can skip editing the YAML Dle and pass its contents to the Operator via the command line. For example:

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBRestore
metadata:
  name: restore1
spec:
  clusterName: my-cluster-name
  backupName: backup1
  pitr:
    type: date
    date: YYYY-MM-DD hh:mm:ss

$ kubectl apply -f deploy/backup/restore.yaml -n $NAMESPACE

$ cat <<EOF | kubectl apply -n $NAMESPACE -f-
apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBRestore
metadata:
  name: restore1
spec:
  clusterName: my-cluster-name
  backupName: backup1
EOF 

spec:
  selective:
    withUsersAndRoles: true
    namespaces:
    - "db1.collection1"
    - "db2.collection2"

https://docs.percona.com/percona-backup-mongodb/features/known-limitations.html#selective-backups-and-restores
https://docs.percona.com/percona-backup-mongodb/usage/restore-selective.html#restore-with-users-and-roles
https://github.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/backup/restore.yaml


To illustrate, let’s say you deDned a preDx my-prefix  for your AWS s3 bucket my-example-bucket . You wish to restore a backup 2025-05-19T07:23:46Z . The
pull path to this backup is "s3://my-example-bucket/my-prefix/2025-05-19T07:23:46Z" . In this case, your restore conDguration looks like this:

Apply the conDguration to start a restore:

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBRestore
metadata:
  name: restore1
spec:
  clusterName: my-cluster-name
  backupSource:
    type: logical
    destination: "s3://my-example-bucket/my-prefix/2025-05-19T07:23:46Z"
    s3:
      credentialsSecret: my-cluster-name-backup-s3
      region: us-east-1
      bucket: backup-testing
      prefix: my-prefix

$ kubectl apply -f deploy/backup/restore.yaml -n $NAMESPACE



8.1.7.2 Restore from a backup to a new Kubernetes-based environment
You can restore from a backup as follows:

On the same cluster where you made a backup

On a new cluster deployed in a different Kubernetes-based environment.

This document focuses on the restore on a new cluster deployed in a different Kubernetes environment.

To restore from a backup, you create a Restore object using a special restore conDguration Dle. The example of such Dle is deploy/backup/restore.yaml .

You can check available options in the restore options reference.

Restore scenarios
This document covers the following restore scenarios:

Restore from a full backup - restore from a full backup without point-in-time

Point-in-time recovery - restore to a speciDc time, a speciDc or a latest transaction or skip a speciDc transaction during a restore. This ability requires that you
conDgure storing oplog for point-in-time recovery

Preconditions

1. When restoring to a new Kubernetes-based environment, make sure it has a Secrets object with the same user passwords as in the original cluster.

2. To restore from a physical backup, set the corresponding encryption key of the target cluster. Find more details about encryption in Data-at-rest encryption.
The name of the required Secrets object can be found out from the spec.secrets  key in the deploy/cr.yaml  ( my-cluster-name-secrets  by default).

Before you begin
1. Make sure that the cluster is running.

2. Export your namespace as an environment variable. Replace the <namespace>  placeholder with your value:

1. Get the backup information. List the backups using this command:

2. Get cluster information. List available clusters using this command:

Restore from a full backup
To make a restore, PBM must know where to take the backup from and have access to that storage.

You can deDne the backup storage in two ways: within the restore object conDguration or pre-conDgure it on the target cluster’s cr.yaml  Dle.

Approach 1: Define storage configuration in the restore object

If you haven’t deDned storage in the target cluster’s cr.yaml  Dle, you can conDgure it directly in the restore object:

1. Set appropriate keys in the deploy/backup/restore.yaml  Dle:

set spec.clusterName  key to the name of the target cluster to restore the backup on

conDgure the spec.backupSource  subsection to point to the cloud storage where the backup is stored. This subsection should include:

the backup type - either logical  or physical

$ export NAMESPACE = <namespace>

$ kubectl get psmdb-backup -n $NAMESPACE

$ kubectl get psmdb -n $NAMESPACE

https://github.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/backup/restore.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml


a destination  key. Take it from the output of the kubectl get psmdb-backup  command.

the necessary storage conDguration keys, just like in the deploy/cr.yaml  Dle of the source cluster.

The destination  key is composed of three parts in case of S3-compatible storage: the s3://  preDx, the s3 bucket name, and the actual backup name.
For Azure Blob storage, you don’t put the preDx, and use your container name as an equivalent of a bucket.

2. Apply the conDguration to start the restore:

During the restore process, the Operator:

a. Takes the storage conDguration from the Restore object

b. ConDgures PBM using this conDguration

c. Resyncs metadata to update it on the target cluster

d. Performs the restore operation

e. Reverts the PBM conDguration back to the one deDned in the cr.yaml  Dle (if any)

3. As the post-restore step, conDgure the main storage within the target cluster’s cr.yaml  to be able to make subsequent backups.

Approach 2: The storage is defined on target

You can already deDne the storage where the backup is stored in the backup.storages  subsection of your target cluster’s deploy/cr.yaml  Dle. In this case,
reference it by name within the restore conDguration.

1. Set appropriate keys in the deploy/backup/restore.yaml  Dle:

set spec.clusterName  key to the name of the target cluster to restore the backup on

specify the storage name in the storageName  key. The name must match the name in the backup.storages  subsection of the deploy/cr.yaml  Dle.

conDgure the spec.backupSource  subsection with the backup destination

2. After conDguring the restore object, start the restoration process:

Point-in-time recovery
As with the restore from a full backup, PBM must know where to take the backup from and have access to the storage. You can deDne the backup storage in two
ways: within the restore object conDguration or pre-conDgure it on the target cluster’s cr.yaml  Dle.

Approach 1: Define storage configuration in the restore object

You can conDgure the storage within the restore object conDguration:

1. Set appropriate keys in the deploy/backup/restore.yaml  Dle.

set spec.clusterName  key to the name of the target cluster to restore the backup on

put additional restoration parameters to the pitr  section:

...
backupSource:
  type: logical
  destination: s3://S3-BUCKET-NAME/BACKUP-NAME
  s3:
    credentialsSecret: my-cluster-name-backup-s3
    region: us-west-2
    endpointUrl: https://URL-OF-THE-S3-COMPATIBLE-STORAGE

$ kubectl exec -it my-cluster-name-rs0-2 -c backup-agent -- pbm config --force-resync

...
storageName: s3-us-west
backupSource:
  destination: s3://S3-BUCKET-NAME/BACKUP-NAME

$ kubectl apply -f deploy/backup/restore.yaml

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml


type  key can be equal to one of the following options

date  - roll back to speciDc date

latest  - recover to the latest possible transaction

date  key is used with type=date  option and contains value in datetime format

conDgure the spec.backupSource  subsection to point to the cloud storage where the backup is stored. This subsection should include:

the backup type - either logical  or physical

a destination  key. Take it from the output of the kubectl get psmdb-backup  command.

the necessary storage conDguration keys, just like in the deploy/cr.yaml  Dle of the source cluster.

2. Run the actual restoration process:

During the restore process, the Operator:

a. Takes the storage conDguration from the Restore object

b. ConDgures PBM using this conDguration

c. Resyncs metadata to update it on the target cluster

d. Performs the restore operation

e. Reverts the PBM conDguration back to the one deDned in the cr.yaml  Dle (if any)

3. As the post-restore step, conDgure the main storage within the target cluster’s cr.yaml  to be able to make subsequent backups.

Approach 2: The storage is defined on target

You can deDne the storage where the backup is stored in the backup.storages  subsection of your target cluster’s deploy/cr.yaml  Dle. In this case, reference
it by name within the restore conDguration.

1. Set appropriate keys in the deploy/backup/restore.yaml  Dle.

set spec.clusterName  key to the name of the target cluster to restore the backup on

put additional restoration parameters to the pitr  section:

type  key can be equal to one of the following options

date  - roll back to speciDc date

latest  - recover to the latest possible transaction

date  key is used with type=date  option and contains value in datetime format

specify the storage name for the storageName  key. The name must match the name the backup.storages  subsection of the deploy/cr.yaml  Dle.

conDgure the spec.backupSource  subsection with the backup destination

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBRestore
metadata:
  name: restore1
spec:
  clusterName: my-cluster-name
  pitr:
    type: date
    date: YYYY-MM-DD hh:mm:ss
  backupSource:
    destination: s3://S3-BUCKET-NAME/BACKUP-NAME
    s3:
      credentialsSecret: my-cluster-name-backup-s3
      region: us-west-2
      endpointUrl: https://URL-OF-THE-S3-COMPATIBLE-STORAGE

$ kubectl apply -f deploy/backup/restore.yaml

...
storageName: s3-us-west
backupSource:
  destination: s3://S3-BUCKET-NAME/BACKUP-NAME

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml


2. Though PBM resyncs metadata on the target cluster when you start the restore process, for point-in-time recovery to the latest possible transaction, we
recommend to run a manual resync before the restore. This ensures PBM has the latest oplog chunks on the target cluster. Connect to one of the database
Pods ( my-cluster-name-rs0-2  for example) and run the following command:

3. Start the restore process:

$ kubectl exec -it my-cluster-name-rs0-2 -c backup-agent -- pbm config --force-resync

$ kubectl apply -f deploy/backup/restore.yaml



8.1.8 Delete the unneeded backup
The maximum amount of stored backups is controlled by the backup.tasks.keep option (only successful backups are counted). Older backups are automatically
deleted, so that amount of stored backups do not exceed this number. Setting keep=0  or removing this option from deploy/cr.yaml  disables automatic
deletion of backups.

Manual deleting of a previously saved backup requires not more than the backup name. This name can be taken from the list of available backups returned by
the following command:

When the name is known, backup can be deleted as follows:

Deleting a backup used as a base for point-in-time recovery (PITR) is possible only starting from the Operator version 1.15.0. Also, deleting such a backup will delete the stored
operations log updates based on this backup.

$ kubectl get psmdb-backup -n <namespace>

$ kubectl delete psmdb-backup/<backup-name> -n <namespace>

Note



8.2 Scale Percona Server for MongoDB on Kubernetes
One of the great advantages brought by Kubernetes is the ease of an application scaling. Scaling a Deployment up or down ensures new Pods are created and
set to available Kubernetes nodes.

Scaling can be vertical and horizontal. Vertical scaling adds more compute or storage resources to MongoDB nodes; horizontal scaling is about adding more
nodes to the cluster. High availability looks technically similar, because it also involves additional nodes, but the reason is maintaining liveness of the system in
case of server or network failures.

Vertical scaling

Scale compute resources

The Operator deploys and manages multiple components, such as MongoDB replica set instances, mongos  and conDg server replica set instances, and others.
You can manage CPU or memory for every component separately by editing corresponding sections in the Custom Resource. We follow the structure for
requests and limits that Kubernetes provides .

To add more resources to your MongoDB replica set instances, edit the following section in the Custom Resource:

Use our reference documentation for the Custom Resource options for more details about other components.

Scale storage

Kubernetes manages storage with a PersistentVolume (PV), a segment of storage supplied by the administrator, and a PersistentVolumeClaim (PVC), a request
for storage from a user. Starting with Kubernetes v1.11, a user can increase the size of an existing PVC object (considered stable since Kubernetes v1.24). The
user cannot shrink the size of an existing PVC object.

Starting from the Operator version 1.16.0, you can scale Percona Server for MongoDB storage automatically by conDguring the Custom Resource manifest.
Alternatively, you can scale the storage manually. For either way, the volume type must support PVCs expansion.

Find exact details about PVCs and the supported volume types in Kubernetes documentation .

Storage resizing with Volume Expansion capability

Certain volume types support PVCs expansion. You can run the following command to check if your storage supports the expansion capability:

To enable storage resizing via volume expansion, do the following:

spec:
  replsets:
    resources:
      requests: 
        memory: 4G
        cpu: 2
      limits:
        memory: 4G
        cpu: 2

$ kubectl describe sc <storage class name> | grep AllowVolumeExpansion

Expected output

AllowVolumeExpansion: true

Set the enableVolumeExpansion Custom Resource option to true  (it is turned off by default).1

Specify new storage size for the replsets.<NAME>.volumeSpec.persistentVolumeClaim.resources.requests.storage  and/or
configsvrReplSet.volumeSpec.persistentVolumeClaim.resources.requests.storage  options in the Custom Resource.

This is the example conDguration of deDning a new storage size in the deploy/cr.yaml  Dle:

2

http://localhost:8001/percona-operator-for-mongodb/print_page.html#architecture-high-availability
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims


The storage size change takes some time. When it starts, the Operator automatically adds the pvc-resize-in-progress  annotation to the
PerconaServerMongoDB  Custom Resource. The annotation contains the timestamp of the resize start and indicates that the resize operation is running.. After
the resize Dnishes, the Operator deletes this annotation.

Manual scaling without Volume Expansion capability

Manual scaling is the way to go if:

your version of the Operator is older than 1.16.0,

your volumes have a type that does not support Volume Expansion, or

you do not rely on automated scaling.

You will need to delete Pods and their persistent volumes one by one to resync the data to the new volumes. This way you can also shrink the storage.

Here’s how to resize the storage:

spec:
  ...
  enableVolumeExpansion: true
  ...
  replsets:
    ...
    volumeSpec:
      persistentVolumeClaim:
        resources:
          requests:
            storage: <NEW STORAGE SIZE>
  ...
  configsvrReplSets:
    volumeSpec:
      persistentVolumeClaim:
        resources:
          requests:
            storage: <NEW STORAGE SIZE>

Apply changes as usual:3

$ kubectl apply -f cr.yaml

Update the Custom Resource with the new storage size by editing and applying the deploy/cr.yaml  Dle:1

spec:
  ...
  replsets:
    ...
    volumeSpec:
      persistentVolumeClaim:
        resources:
          requests:
            storage: <NEW STORAGE SIZE>

Apply the Custom Resource for the changes to come into effect:2

$ kubectl apply -f deploy/cr.yaml

Delete the StatefulSet with the orphan  option

The Pods will not go down and the Operator is going to recreate the StatefulSet:

3

$ kubectl delete sts <statefulset-name> --cascade=orphan

$ kubectl get sts <statefulset-name>



The storage size change takes some time. When it starts, the Operator automatically adds the pvc-resize-in-progress  annotation to the
PerconaServerMongoDB  Custom Resource. The annotation contains the timestamp of the resize start and indicates that the resize operation is running.. After
the resize Dnishes, the Operator deletes this annotation.

Horizontal scaling

Replica Sets

You can change the size separately for different components of your MongoDB replica set by setting these options in the appropriate subsections:

replsets.size allows you to set the size of the MongoDB Replica Set,

replsets.nonvoting.size allows you to set the number of non-voting members,

replsets.arbiter.size allows you to set the number of Replica Set Arbiter instances,

For example, the following update in deploy/cr.yaml  sets the size of the MongoDB Replica Set rs0  to 5  nodes:

Expected output

my-cluster-name-rs0       3/3     39s

Scale up the cluster (Optional)

Changing the storage size would require us to terminate the Pods, which decreases the computational power of the cluster and might cause performance
issues. To improve performance during the operation we are going to change the size of the cluster from 3 to 5 nodes:

Apply the change:

New Pods will already have the new storage size:

4

spec:
  ...
  replsets:
    ...
    size: 5

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pvc

Expected output

NAME                                STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS   AGE
mongod-data-my-cluster-name-cfg-0   Bound    pvc-a2b37f4d-6f11-443c-8670-de82ce9fc335   10Gi       RWO            standard       110m
mongod-data-my-cluster-name-cfg-1   Bound    pvc-ded949e5-0f93-4f57-ab2c-7c5fd9528fa0   10Gi       RWO            standard       109m
mongod-data-my-cluster-name-cfg-2   Bound    pvc-f3a441dd-94b6-4dc0-b96c-58b7851dfaa0   10Gi       RWO            standard       108m
mongod-data-my-cluster-name-rs0-0   Bound    pvc-b183c40b-c165-445a-aacd-9a34b8fff227   19Gi       RWO            standard       49m
mongod-data-my-cluster-name-rs0-1   Bound    pvc-f186426b-cbbe-4c31-860e-97a4dfca3de0   19Gi       RWO            standard       47m
mongod-data-my-cluster-name-rs0-2   Bound    pvc-6beb6ccd-8b3a-4580-b3ef-a2345a2c21d6   19Gi       RWO            standard       45m 

Delete PVCs and Pods with the old storage size one by one. Wait for data to sync before you proceed to the next node.

The new PVC is going to be created along with the Pod.

5

$ kubectl delete pvc <PVC NAME>
$ kubectl delete pod <POD NAME>

spec:
  ...
  replsets:
  - name: rs0
    size: 5
    ...



Don’t forget to apply changes as usual, running the kubectl apply -f deploy/cr.yaml  command.

The Operator will not allow to scale Percona Server for MongoDB with the kubectl scale statefulset <StatefulSet name>  command as it puts size  conDguration options out
of sync.

Sharding

You can change the size for different components of your MongoDB sharded cluster by setting these options in the appropriate subsections:

sharding.conDgsvrReplSet.size allows you to set the number of ConDg Server instances  in a sharded cluster,

sharding.mongos.size allows you to set the number of mongos  instances in a sharded cluster.

Changing the number of shards

You can change the number of shards of an existing cluster by adding or removing members in the spec.replsets subsection.

For example, given the following cluster that has 2 shards:

You can add an extra shard by applying the following conDguration:

Similary, you can reduce the number of shards by removing the rs1  and rs2  elements:

The Operator will not allow you to remove existing shards unless they don’t have any user-created collections. It is your responsibility to ensure the shard’s data is migrated to the
remaining shards in the cluster before trying to applying this change.

Note

spec:
  ...
  replsets:
  - name: rs0
    size: 3
    ...
  - name: rs1
    size: 3
    ...

spec:
  ...
  replsets:
  - name: rs0
    size: 3
    ...
  - name: rs1
    size: 3
    ...
  - name: rs2
    size: 3
    ...

spec:
  ...
  replsets:
  - name: rs0
    size: 3
    ...

Note

https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.percona.com/percona-operator-for-mongodb/operator.html#replsets-section
https://www.mongodb.com/docs/manual/tutorial/remove-shards-from-cluster


8.3 Multi-cluster and multi-region deployment



8.3.1 About multi-cluster and multi-region Percona Operator for
MongoDB deployments
MongoDB is built for distributed resilience — and Percona Operator for MongoDB unlocks that power across clusters and regions.

This section introduces two powerful deployment models — multi-cluster and multi-region. It also explains how to conDgure cross-site replication using the
Operator. You’ll learn how to structure your clusters, understand the roles of Main and Replica sites, and set up secure, synchronized Percona Server for
MongoDB clusters across environments with the Operator.

Deployment models: Multi-cluster vs Multi-region
At a glance, both models involve running Percona Server for MongoDB nodes across multiple environments. But their goals, scope, and setup differ.

Multi-cluster deployments span multiple Kubernetes clusters, typically within the same cloud provider or region. This model is ideal for high availability,
staging/production isolation, or cluster migration.

Multi-region deployments extend MongoDB across geographically distributed data centers or cloud regions. This setup supports disaster recovery, latency
optimization, and jurisdictional data control.

While the underlying mechanics such as replica sets, TLS, and service exposure are similar, multi-region deployments introduce additional complexity around
DNS, network reachability, and manual conDguration.

Cross-site replication

To maintain the same set of data in clusters within multi-cluster or multi-region deployment, the Operator uses the cross-site replication. This means that one
cluster is the Main site and another one(s) - the Replica site(s).

The following diagram shows how the data is replicated between the sites

DB Pod N Data
replication

Operator

Main site

ReplicaSet

Config Server
ReplicaSet

mongos

Replica site

Operator

ReplicaSet

Config Server
ReplicaSet

mongos

Main site: This is the authoritative cluster. It runs the primary node which accepts the write tra`c. The Operator fully controls this site, managing the replica
set conDguration, backups, user credentials and other operations.

Replica site: These are secondary clusters that host MongoDB nodes and replicate data from the Main site. The Operator deploys this site in passive mode
and doesn’t control the replica set conDguration there. The passive mode is set by the unmanaged: true  _ag in the Custom Resource.

This separation ensures consistency and avoids con_icts when managing distributed deployments.

Why to use multi-cluster or multi-region?
Choosing the right topology depends on your goals. Here are common use cases that you can achieve with these models:



High availability - Spread MongoDB nodes across clusters to avoid single points of failure. If one cluster goes down, others remain operational.

Staging vs Production Isolation - Run isolated environments with shared data topology. Test changes safely without impacting production.

Cluster migration - Move workloads between clusters or cloud providers with minimal downtime.

Disaster recovery - Replicate data across regions to survive outages. Even if an entire data center fails, your application stays online.

Geo-distributed applications - Serve users from the nearest region to reduce latency and improve experience.

Compliance isolation - Keep data within speciDc jurisdictions to meet regulatory requirements.

Next steps

Plan your deployment



8.3.2 Plan your multi-cluster or multi-region deployment

Requirements
Regardless of topology, successful deployments share several technical requirements:

Network connectivity: Every node in both the Main and the Replica sites must be able to reach each other over the network, like in full mesh:

Main site

Config Server
ReplicaSet

ReplicaSet

Replica site

Config Server
ReplicaSet

ReplicaSet

`

`

To make this happen in Kubernetes clusters, you need to expose all Replica Set nodes (including ConDg Servers) on both sites through a dedicated Service. To
learn more, see the Service per Pod section in the Exposing the cluster chapter.

User credentials must be the same in both clusters.

TLS certiDcates must be the same in both clusters.

You must have a single Main cluster but you can have multiple Replica clusters as long as you don’t have more than 50 members in the Replica Set. This
limitation comes from MongoDB itself, for more information please check MongoDB documentation .

Topologies
The Operator automates conDguration of Main and Replica MongoDB sites when you run them on Kubernetes. However, multi-cluster or multi-region deployment
is not bound to Kubernetes. Either Main or Replica can run outside of Kubernetes, be regular MongoDB and be out of the Operator’s control.

The following topologies are supported:

Main and Replica clusters on Kubernetes.

This is the Kubernetes-native deployment. You can automate the cluster management using the Multi-Cluster Services.

The Deployment section focuses on this topology and provides the setup steps.

Main cluster on Kubernetes and Replica cluster outside of Kubernetes.

You can deploy or reuse an existing cluster on Kubernetes as the Main site and have the Replica cluster outside of Kubernetes.

The setup steps are:

https://www.mongodb.com/docs/manual/core/replica-set-members/#replica-set-members


1. Deploy the Main cluster on a Kubernetes cluster (or use an existing one)

2. Export TLS certiDcates and user Secrets from the main site and use them to conDgure the Replica site.

3. Deploy the Replica cluster wherever you want.

4. Interconnect sites by adding nodes from the Replica cluster to the Main cluster as external nodes.

Main cluster outside of Kubernetes and Replica cluster on Kubernetes

You can deploy or reuse an existing cluster outside of Kubernetes as the Main site and run the Replica cluster on Kubernetes.

The setup steps are:

1. Deploy the Main cluster wherever you want (or use an existing one)

2. Export the TLS certiDcates and user credentials from the main site.

3. Create the Kubernetes Secrets objects: for TLS certiDcates and for User secrets. You will use these Secrets to deploy the Replica site.

4. Deploy the Replica cluster on a Kubernetes cluster using the Secrets you created.

5. Interconnect sites by adding nodes from the Replica cluster to the Main cluster using the MongoDB client.

Next steps

Multi-cluster services  Deploy the Main site



8.3.3 Multi-cluster Services



8.3.3.1 Multi-cluster Services
Multi-cluster Services (MCS)  is a cross-cluster discovery and invocation mechanism that uses the existing Service object.

MCS allows you to create a “_eet” of Kubernetes clusters that share a common identity and are managed as a single logical unit. This enables service discovery
and communication across clusters via a virtual IP address, simplifying the process of building multi-region or multi-cluster deployments.

Multi-cluster Services should be supported by the cloud provider. It is natively supported by Google Kubernetes Engine (GKE) . Amazon Elastic Kubernetes
Service (EKS) provides multi-cluster Services via the AWS Cloud Map .

Use multi-cluster Services
To use multi-cluster Services for your deployment, you must do the following:

Enable multi-cluster Services with your cloud provider

ConDgure the Operator to use multi-cluster Services

MCS can charge cross-site replication with additional limitations speciDc to the cloud provider. For example, GKE demands all participating Pods to be in the
same project . Also, consider using a custom namespace for exporting Services. Using the default  and kube-system  Namespaces can cause unintended
name con_icts and the resulting unintended grouping.

Enable multi-cluster Services with your cloud provider

To get started, follow the setup guides for your speciDc cloud provider:

Enable multi-cluster Services on GKE

Enable multi-cluster Services on EKS

Configure the Operator to use multi-cluster Services

To work in multi-cluster Kubernetes environment, the Operator must ensure service discovery across clusters.

To do this, the Operator must create the ServiceExport and ServiceImport resources.

A ServiceExport is a Kubernetes resource that marks a standard Service for sharing across clusters. When created, ServiceExport signals to the MCS controller
that the service with the same name should be made discoverable to other clusters.

The Operator creates the ServiceExport resource for a cluster when the multiCluster  subsection of the deploy/cr.yaml  contains the following
conDguration:

the multiCluster.enabled  key is set to true

the multiCluster.DNSSuffix  string is equal to the cluster domain su`x for multi-cluster Services used by Kubernetes. The default value  is
svc.clusterset.local .

For a Service to be exported and become accessible by other clusters of the _eet, it must have the same name and namespace in each cluster. Once exported,
the service is recognized as a single combined Service. It can be resolved from any Pod in any _eet cluster via the shared DNS name:

It takes approximately Dve minutes to create ServiceExport and sync with the clusters of the _eet. You can check the list of services for export with the following
commands:

...
multiCluster:
  enabled: true
  DNSSuffix: svc.clusterset.local
...

SERVICE_NAME.NAMESPACE.svc.clusterset.local

$ kubectl get serviceexport

https://cloud.google.com/kubernetes-engine/docs/concepts/multi-cluster-services
https://cloud.google.com/kubernetes-engine/docs/concepts/multi-cluster-services
https://aws.amazon.com/cloud-map/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/kubernetes-engine/docs/how-to/multi-cluster-services


A ServiceImport is a Kubernetes resource to consume exported services in each importing cluster. This is analogous to the traditional Service type in
Kubernetes. The ServiceImport is created automatically by the MCS controller. It contains endpoint information from all clusters that exported the service and
enables workloads in one cluster to access services in another using the uniDed DNS name.

To check the list of services for import, run this command:

Since ServiceImport is not controlled by the Operator, objects you must check the MCS controller installed by your cloud provider if you need to troubleshoot it.

Next steps

Enable MCS on GKE  Enable MCS on EKS

Expected output

NAME                     AGE
my-cluster-name-cfg      22m
my-cluster-name-cfg-0    22m
my-cluster-name-cfg-1    22m
my-cluster-name-cfg-2    22m
my-cluster-name-mongos   22m
my-cluster-name-rs0      22m
my-cluster-name-rs0-0    22m
my-cluster-name-rs0-1    22m
my-cluster-name-rs0-2    22m

$ kubectl get serviceimport

Expected output

NAME                     TYPE           IP                  AGE
my-cluster-name-cfg      Headless                           22m
my-cluster-name-cfg-0    ClusterSetIP   ["10.73.200.89"]    22m
my-cluster-name-cfg-1    ClusterSetIP   ["10.73.192.104"]   22m
my-cluster-name-cfg-2    ClusterSetIP   ["10.73.207.254"]   22m
my-cluster-name-mongos   ClusterSetIP   ["10.73.196.213"]   22m
my-cluster-name-rs0      Headless                           22m
my-cluster-name-rs0-0    ClusterSetIP   ["10.73.206.24"]    22m
my-cluster-name-rs0-1    ClusterSetIP   ["10.73.207.20"]    22m
my-cluster-name-rs0-2    ClusterSetIP   ["10.73.193.92"]    22m



8.3.3.2 Enable multi-cluster Services on GKE
This document provides instructions how to enable multi-cluster Services on GKE. To learn more about multi-cluster services concept, see Multi-cluster Services.

The recommended approach is to use Workload Identity Federation . Workload Identity Federation allows Kubernetes service accounts to impersonate Google
Cloud IAM service accounts. This means:

You don’t need to store and mount service account keys in Pods.

You can assign Dne-grained IAM roles to workloads.

Authentication is handled securely and natively.

Before you start

1. Check the requirements for MCS  on GKE and ensure your infrastructure meets them.

2. Ensure your account has the following roles:

roles/container.admin

roles/iam.serviceAccountAdmin

Procedure

1. Export your GKE project ID as an environment variable to simplify further conDguration

2. Enable the MCS, _eet (hub), Resource Manager, Cloud Service Mesh, and Cloud DNS APIs for your account:

3. Enable multi-cluster Services for your project on GKE:

4. Create two clusters and enable Workload Identity for them. Let’s name the clusters main  and replica :

Create the main  cluster:

Create the replica  cluster:

5. Add clusters to the _eet and enable Workload Identity Federation:

Add the main cluster

PROJECT_ID=<your-project-id>

$ gcloud services enable \
multiclusterservicediscovery.googleapis.com \
gkehub.googleapis.com \
cloudresourcemanager.googleapis.com \
trafficdirector.googleapis.com \
dns.googleapis.com \
--project $PROJECT_ID

$ gcloud container fleet multi-cluster-services enable --project $PROJECT_ID

$ gcloud container clusters create main-cluster \
  --zone us-central1-a \
  --cluster-version 1.33 \
  --machine-type n1-standard-4 \
  --num-nodes=3 \
  --workload-pool=$PROJECT_ID.svc.id.goog

$ gcloud container clusters create replica-cluster \
  --zone us-central1-a \
  --cluster-version 1.33 \
  --machine-type n1-standard-4 \
  --num-nodes=3 \
  --workload-pool=$PROJECT_ID.svc.id.goog

https://cloud.google.com/iam/docs/workload-identity-federation
https://cloud.google.com/kubernetes-engine/docs/how-to/multi-cluster-services#requirements


Add the replica cluster

w. Enable MCS importer to manage Identity and Access Management (IAM) permissions.

Extract the Project number and set it as the environment variable:

Enable IAM permissions:

7. Verify that MCS is enabled:

Next steps

Deploy the Main site

$ gcloud container fleet memberships register main-cluster \
  --gke-cluster us-central1-a/main-cluster \
  --enable-workload-identity 

$ gcloud container fleet memberships register replica-cluster \
  --gke-cluster us-central1-a/replica-cluster \
  --enable-workload-identity 

$ PROJECT_NUMBER=$(gcloud projects describe $PROJECT_ID --format="value(projectNumber)")

$ gcloud projects add-iam-policy-binding $PROJECT_ID \
  --member 
"principal://iam.googleapis.com/projects/$PROJECT_NUMBER/locations/global/workloadIdentityPools/$PROJECT_ID.svc.id.goog/sub
ject/ns/gke-mcs/sa/gke-mcs-importer" \
  --role "roles/compute.networkViewer"

$ gcloud container fleet multi-cluster-services describe --project $PROJECT_ID

Sample output

createTime: '2021-11-10T09:31:41.578155328Z'
membershipStates:
  projects/166042509722/locations/us-central1/memberships/main-cluster:
    state:
      code: OK
      description: Firewall successfully updated
      updateTime: '2025-09-26T11:01:09.038866570Z'
  projects/166042509722/locations/us-central1/memberships/replica-cluster:
    state:
      code: OK
      description: Firewall successfully updated
      updateTime: '2025-09-26T11:01:44.661916334Z'
name: projects/cloud-dev-112233/locations/global/features/multiclusterservicediscovery
resourceState:
  state: ACTIVE
spec: {}
updateTime: '2024-05-16T08:02:36.718079209Z'



8.3.3.3 Enable multi-cluster Services on EKS
The AWS Cloud Map MCS Controller is an open-source Kubernetes controller that implements the Multi-Cluster Services API using AWS Cloud Map as the
backend. It allows services exported from one cluster to be discovered and consumed in another using the DNS format:

Read more about how AWS Cloud Map MCS Controller works in the AWS blog post .

Also, learn more about AWS Cloud Map pricing 

Prerequisites
Before you get started with MCS on EKS, ensure you have the following:

1. Two EKS clusters that can communicate with each other over the Virtual Private Cloud (Amazon VPC) peering . See Create the EKS cluster guide for the
cluster creation steps.

2. Each EKS cluster has permissions to communicate with AWS Cloud Map. A service account must have the IAM policy assigned that grants access to the
AWS Cloud Map. For testing purposes, you can use the AWSCloudMapFullAccess policy. In production, apply least privilege permissions.

For more information about IAM policies for AWS Cloud Map, see the Identity and Access Management for AWS Cloud Map  documentation.

Configuration
Follow the steps from the AWS Cloud Map MCS Controller for K8s  guide to conDgure multi-cloud Services.

Before you enable MCS on the clusters, create the ClusterProperty objects on each cluster:

Check the AWS MCS controller repository  for more information.

Next steps

Deploy the Main site

SERVICE_NAME.NAMESPACE.svc.clusterset.local

apiVersion: about.k8s.io/v1alpha1
kind: ClusterProperty
metadata:
  name: cluster.clusterset.k8s.io
spec:
  value: [Your Cluster identifier]
---
apiVersion: about.k8s.io/v1alpha1
kind: ClusterProperty
metadata:
  name: clusterset.k8s.io
spec:
  value: [Your ClusterSet identifier]

https://github.com/aws/aws-cloud-map-mcs-controller-for-k8s
https://docs.aws.amazon.com/cloud-map/latest/dg/what-is-cloud-map.html
https://aws.amazon.com/blogs/opensource/introducing-the-aws-cloud-map-multicluster-service-controller-for-k8s-for-kubernetes-multicluster-service-discovery/
https://aws.amazon.com/cloud-map/pricing/
https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html
https://docs.aws.amazon.com/cloud-map/latest/dg/security-iam.html#security_iam_access-manage
https://aws.amazon.com/blogs/opensource/introducing-the-aws-cloud-map-multicluster-service-controller-for-k8s-for-kubernetes-multicluster-service-discovery/
https://github.com/aws/aws-cloud-map-mcs-controller-for-k8s#usage


8.3.3.4 Apply MCS to an existing cluster
You can turn on MCS for the already-existing non-MCS cluster. To do this:

Restart the Operator after editing the multiCluster  subsection keys and applying deploy/cr.yaml . Find the Operator’s Pod name in the output of the
kubectl get pods  command (it will be something like percona-server-mongodb-operator-d859b69b6-t44vk ) and delete it as follows:

If you are enabling MCS for a running cluster after upgrading from the Operator version 1.11.0  or below, you need rotating multi-domain (SAN) certiDcates.
Do this by pausing the cluster and deleting TLS Secrets.

kubectl delete percona-server-mongodb-operator-d859b69b6-t44vk



8.3.4 Deployment



8.3.4.1 Configure the Main site
This guide shows you how to set up the Main Percona Server for MongoDB site for a multi-cluster deployment. The steps focus on Kubernetes with multi-cluster
Services enabled on Google Kubernetes Engine, but you can also use them for a standard Kubernetes environment.

Before you start
Clone the repository with all manifests and source code. You’ll need it to edit conDguration Dles for the database clusters, Secrets, backups and restores. Run the
following command:

Make sure to clone the correct branch. The branch name is the same as the Operator release version.

Initial preparation
When you manage multiple clusters, creating a separate kubeconDg Dle for each one helps you avoid accidentally running commands on the wrong cluster. This
keeps your environments organized and reduces the risk of making changes in the wrong place.

1. Create a kubeconfig  Dle and export it as an environment variable

For the main  cluster:

For the replica  cluster:

2. Set the context for the clusters from their respective kubeconDg Dles.

On the main  cluster:

On the replica  cluster:

3. Grant your Google Cloud user permissions to manage clusters. To do this, create a ClusterRoleBinding binding of the cluster-admin  ClusterRole to your
account for each cluster. Specify different names for each cluster to avoid naming collision:

On the main  cluster:

On the replica  cluster:

4. Create the same namespace on both clusters and set the context to point to this namespace. The namespace must be the same because it is a part of the
shared DNS used to identify and resolve services across clusters.

Run this command on both clusters to create the example  namespace. Use your own value:

Install the Operator and Percona Server for MongoDB

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator

export KUBECONFIG=./main_config gcloud container clusters get-credentials main-cluster --zone us-central1-a

export KUBECONFIG=./replica_config gcloud container clusters get-credentials replica-cluster --zone us-central1-a

$ kubectl --kubeconfig main_config config set-context $(kubectl config current-context)

$ kubectl --kubeconfig replica_config config set-context $(kubectl config current-context)

$ kubectl --kubeconfig main_config create clusterrolebinding cluster-admin-binding-main --clusterrole cluster-admin --user 
$(gcloud config get-value core/account)

$ kubectl --kubeconfig replica_config create clusterrolebinding cluster-admin-binding-replica --clusterrole cluster-admin -
-user $(gcloud config get-value core/account)

$ kubectl create namespace example
$ kubectl config set-context --current --namespace=example



1. Install the Operator deployment:

As the result you will have the Operator Pod up and running.

2. Prepare Percona Server for MongoDB conDguration on the main cluster to include the following:

Name your cluster to differentiate the main and replica one. For example, name it main-cluster .

Replica set, conDg server replica set and mongos Pods are exposed with the ClusterIP Service type. This type is required by the multi-cluster services as
the nodes will communicate internally

Multi-cluster services are enabled. Learn more about preparing the Operator for multi-services

The sample conDguration looks like this:

3. Apply the conDguration to deploy Percona Server for MongoDB:

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.21.1/deploy/bundle.yaml -n <namespace>

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com serverside-applied
role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator serverside-applied
deployment.apps/percona-server-mongodb-operator serverside-applied

cr-main.yaml

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDB
metadata:
  name: main-cluster
updateStrategy: SmartUpdate
multiCluster:
  enabled: true
  DNSSuffix: svc.clusterset.local
upgradeOptions:
  versionServiceEndpoint: https://check.percona.com
  apply: disabled
  schedule: "0 2 * * *"
  setFCV: false
secrets:
  users: my-cluster-name-secrets
  encryptionKey: my-cluster-name-mongodb-encryption-key
...
replsets:
- name: rs0
  size: 3
  expose:
    enabled: true
    type: ClusterIP
....
sharding:
  enabled: true
  configsvrReplSet:
    size: 3
    expose:
      enabled: true
      type: ClusterIP
    volumeSpec:
      persistentVolumeClaim:
        resources:
          requests:
            storage: 3Gi

mongos:
  size: 3
  expose:
    type: ClusterIP



Export the cluster secrets and certificates to be copied from Main to Replica
The Main and Replica sites must have the same same users credentials and TLS certiDcates to be able to communicate with each other. To do this, export the
Secrets from the main  cluster and recreate them on the replica  cluster.

1. List the Secrets objects:

The Secrets you are interested in are the following:

main-cluster-name-ssl  - SSL certiDcates for client connections,

main-cluster-name-ssl-internal  - SSL certiDcates for replication,

my-cluster-name-secrets  - user credentials,

my-cluster-name-mongodb-encryption-key  - encryption key Dle.

2. Export each Secret to a Dle:

3. Remove the annotations , creationTimestamp , resourceVersion , selfLink , and uid  metadata Delds from the resulting Dle to make it ready for the
replica  site.

Use the following scripts:

The commands do the following for each Dle:

Remove metadata Delds that are unique to the original cluster (like annotations, timestamps, and IDs) from the Secret YAML Dle, making it suitable for
use in the replica cluster

Update the Secret Dle by replacing all instances of “main-cluster” with “replica-cluster”, so the secret matches the replica cluster’s naming.

You will need to further apply these secrets on Replica.

Next steps

Configure Replica site

$ kubectl apply -f cr-main.yaml

$ kubectl get secrets

$ kubectl get secret my-cluster-name-secrets -o yaml > my-cluster-secrets.yml
$ kubectl get secret main-cluster-ssl  -o yaml > main-cluster-ssl.yml
$ kubectl get secret main-cluster-ssl-internal -o yaml > main-cluster-ssl-internal.yml
$ kubectl get secret my-cluster-name-mongodb-encryption-key -o yaml > my-cluster-name-mongodb-encryption-key.yml

$ yq eval 'del(.metadata.ownerReferences, .metadata.annotations, .metadata.creationTimestamp, .metadata.resourceVersion, 
.metadata.selfLink, .metadata.uid)' my-cluster-secrets.yml > my-cluster-secrets-replica.yaml
sed -i '' 's/main-cluster/replica-cluster/g' my-cluster-secrets-replica.yaml

$ yq eval 'del(.metadata.ownerReferences, .metadata.annotations, .metadata.creationTimestamp, .metadata.resourceVersion, 
.metadata.selfLink, .metadata.uid)' main-cluster-ssl.yml > replica-cluster-ssl.yml
sed -i '' 's/main-cluster/replica-cluster/g' replica-cluster-ssl.yml

$ yq eval 'del(.metadata.ownerReferences, .metadata.annotations, .metadata.creationTimestamp, .metadata.resourceVersion, 
.metadata.selfLink, .metadata.uid)' main-cluster-ssl-internal.yml > replica-cluster-ssl-internal.yml
sed -i '' 's/main-cluster/replica-cluster/g' replica-cluster-ssl-internal.yml

$ yq eval 'del(.metadata.ownerReferences, .metadata.annotations, .metadata.creationTimestamp, .metadata.resourceVersion, 
.metadata.selfLink, .metadata.uid)' my-cluster-name-mongodb-encryption-key.yml > my-cluster-name-mongodb-encryption-
key2.yml
sed -i '' 's/main-cluster/replica-cluster/g' my-cluster-name-mongodb-encryption-key2.yml



8.3.4.2 Configure the Replica site
When the Operator creates a new cluster, a lot of things are happening, such as electing the Primary, generating certiDcates, and picking speciDc names. This
should not happen on the Replica site. Therefore, you deploy the Replica site in an unmanaged mode.

Setting unmanaged  to true will not only prevent the Operator from controlling the Replica Set conDguration, but it will also result in not generating certiDcates and users credentials for
new clusters.

For the Main and Replica sites to communicate, they must have the same the user and TLS Secrets.

1. Ensure you have created the same namespace as on the main site and set the context to it so that subsequent commands are executed in that namespace.

```{.text .no-copy} CURRENT NAME CLUSTER AUTHINFO NAMESPACE * gke_us-central1-a-replica-cluster gkeus-central1-a-replica-cluster gke_us-central1-a-replica-cluster example

2. Create the Secrets from the secrets Dles you prepared from the main cluster.

Replica will not start if the TLS secrets and the encryption key are not copied. If users are not copied, the replica will join the replica set, but it will be
restarting due to failed liveness checks.

3. Prepare the Replica site conDguration:

Name your cluster. The name must match the names of the Secrets objects you created. For example, replica-site

Set the spec.unmanaged to true

Enable multi-cluster services in the spec.multiCluster subsection.

Set the updateStrategy key to RollingUpdate , because Smart Updates are not allowed on unmanaged clusters.

Reference the Secrets you created in the spec.Secrets section

Expose the Replica set, conDg server replica set and mongos Pods with the ClusterIP type.

Also, the Operator versions prior to 1.19.0 did not support backups on unmanaged clusters, so set backup.enabled to false for the Operator 1.18.0 and
older.

Here is an example:

Note

$ kubectl get namespaces
$ kubectl config get-contexts

Sample output

$ kubectl apply -f my-cluster-secrets-replica.yaml
$ kubectl apply -f replica-cluster-ssl.yml
$ kubectl apply -f replica-cluster-ssl-internal.yml
$ kubectl apply -f my-cluster-name-mongodb-encryption-key2.yml

Sample output

secret/my-cluster-name-secrets created
secret/replica-cluster-ssl created
secret/replica-cluster-ssl-internal created
secret/my-cluster-name-mongodb-encryption-key created

4. Apply the conDguration to deploy the Replica site

Next steps

Interconnect sites for replication

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDB
metadata:
 name: replica-cluster
spec:
 unmanaged: true
 multiCluster:
 enabled: true
 DNSSuffix: svc.clusterset.local
 updateStrategy: RollingUpdate
 upgradeOptions:
 apply: disabled
 schedule: "0 2 * * *"
 secrets:
 users: my-cluster-name-secrets
 encryptionKey: my-cluster-name-mongodb-encryption-key
 ssl: replica-cluster-ssl
 sslInternal: replica-cluster-ssl-internal
 replsets:
 - name: rs0
 size: 3
 expose:
 enabled: true
 type: ClusterIP
 volumeSpec:
 persistentVolumeClaim:
 resources:
 requests:
 storage: 3Gi

 sharding:
 enabled: true
 configsvrReplSet:
 size: 3
 expose:
 enabled: true
 type: ClusterIP
 volumeSpec:
 persistentVolumeClaim:
 resources:
 requests:
 storage: 3Gi

 mongos:
 size: 1
 expose:
 type: ClusterIP

$ kubectl apply -f deploy/cr.yaml

8.3.4.3 Interconnect sites for replication
At this step, you should let the clusters know about each other and interconnect them for replication. To do so, you need to add the Replica site’s nodes as
external nodes for the Main site. In the same way, you add the Main’s site nodes as external ones for the Replica site.

Every site has three replica set members and three conDg server replica set members. But you add only two of them as voting members, while the third member
is added as a non-voting one. In doing so, you avoid split-brain situations and prevent the primary elections if the Replica site is down or there is a network
disruption between the sites.

In this way, the main cluster managed by the Operator is able to reach the the replica nodes.

List the services
Ensure that the nodes are exposed by listing the services. Run the following command on both clusters:

This is the sample output for the main cluster

Add the Replica site nodes to the Main site

1. Modify the deploy/cr-main.yaml Dle of the Main site and deDne the exposed nodes of the Replica site in the replsets.externalNodes and
sharding.configsvrReplset.externalNodes subsections. For each node, specify the following:

set host to the URL of the external replset instance. When exposed, a node has its own service, recognized by the domain name <service-name>.
<namespace>.svc.clusterset.local

set port to the port number of the external node. If not set, the default 27017 port is used,

set priority to deDne the priority of the external node. The default priority for local members of the cluster is 2 . When you add external nodes, set
the lower priority to avoid an unmanaged node being elected as a primary. A zero 0 priority adds the node as a non-voting member.

set votes to the number of votes an external node can cast in a replica set election (0 is default and should be used for non-voting members of the
cluster).

Here is an example:

$ kubectl get services

Sample output

gke-mcs-6i19n16iou ClusterIP 34.118.226.213 <none> 27017/TCP 30m
gke-mcs-7kc05t4an8 ClusterIP 34.118.232.25 <none> 27017/TCP 34m
gke-mcs-8rnph5kn83 ClusterIP 34.118.232.15 <none> 27017/TCP 30m
gke-mcs-c2rifb19i2 ClusterIP 34.118.227.18 <none> 27017/TCP 37m
gke-mcs-d2a5n9jthp ClusterIP 34.118.238.169 <none> 27017/TCP 39m
gke-mcs-eu3ms5pd46 ClusterIP 34.118.233.180 <none> 27017/TCP 25m
gke-mcs-fvvrfrc8lj ClusterIP 34.118.229.203 <none> 27017/TCP 30m
gke-mcs-gqv8a8hvj0 ClusterIP 34.118.239.68 <none> 27017/TCP 39m
gke-mcs-i7esf6en63 ClusterIP 34.118.231.126 <none> 27017/TCP 27m
gke-mcs-jrvipn8erd ClusterIP 34.118.235.246 <none> 27017/TCP 34m
gke-mcs-mefti0gh66 ClusterIP 34.118.236.218 <none> 27017/TCP 37m
gke-mcs-q1jve1uq67 ClusterIP 34.118.225.234 <none> 27017/TCP 25m
gke-mcs-rp77hijaj0 ClusterIP 34.118.229.123 <none> 27017/TCP 39m
gke-mcs-tjbtnp3ica ClusterIP 34.118.236.161 <none> 27017/TCP 27m
main-cluster-cfg ClusterIP None <none> 27017/TCP 44m
main-cluster-cfg-0 ClusterIP 34.118.227.52 34.42.135.122 27017:31233/TCP 44m
main-cluster-cfg-1 ClusterIP 34.118.233.187 34.135.82.96 27017:31941/TCP 43m
main-cluster-cfg-2 ClusterIP 34.118.227.173 35.202.26.197 27017:30961/TCP 42m
main-cluster-mongos ClusterIP 34.118.233.114 <none> 27017/TCP 44m
main-cluster-rs0 ClusterIP None <none> 27017/TCP 44m
main-cluster-rs0-0 ClusterIP 34.118.231.58 <none> 27017/TCP 44m
main-cluster-rs0-1 ClusterIP 34.118.239.165 <none> 27017/TCP 43m
main-cluster-rs0-2 ClusterIP 34.118.225.3 <none> 27017/TCP 42m

https://docs.mongodb.com/manual/reference/replica-configuration/#mongodb-rsconf-rsconf.members-n-.priority
https://docs.mongodb.com/manual/reference/replica-configuration/#mongodb-rsconf-rsconf.members-n-.votes

2. Apply the changes:

Add Main site nodes to the Replica site

1. Modify the deploy/cr-main.yaml Dle of the Replica site and deDne the exposed nodes of the Main site in the replsets.externalNodes and
sharding.configsvrReplset.externalNodes subsections. For each node, specify the following:

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDB
metadata:
 name: main-cluster
spec:
...
 updateStrategy: SmartUpdate
 multiCluster:
 enabled: true
 DNSSuffix: svc.clusterset.local
 upgradeOptions:
 apply: disabled
 schedule: "0 2 * * *"
 secrets:
 users: my-cluster-name-secrets
 encryptionKey: my-cluster-name-mongodb-encryption-key
 replsets:
 - name: rs0
 size: 3
 externalNodes:
 - host: replica-cluster-rs0-0.psmdb.svc.clusterset.local
 votes: 1
 priority: 1
 - host: replica-cluster-rs0-1.psmdb.svc.clusterset.local
 votes: 1
 priority: 1
 - host: replica-cluster-rs0-2.psmdb.svc.clusterset.local
 votes: 0
 priority: 0
 expose:
 enabled: true
 type: ClusterIP

 sharding:
 enabled: true
 configsvrReplSet:
 size: 3
 externalNodes:
 - host: replica-cluster-cfg-0.psmdb.svc.clusterset.local
 votes: 1
 priority: 1
 - host: replica-cluster-cfg-1.psmdb.svc.clusterset.local
 votes: 1
 priority: 1
 - host: replica-cluster-cfg-2.psmdb.svc.clusterset.local
 votes: 0
 priority: 0
 expose:
 enabled: true
 type: ClusterIP

 mongos:
 size: 3
 expose:
 type: ClusterIP

$ kubectl apply -f deploy/cr-main.yaml

2. Apply the conDguration:

Check cluster connectivity
Verify that the clusters are interconnected by connecting to one of them.

1. Connect to one of the Pods directly using the credentials of the database admin user. Refer to the Connect to Percona Server for MongoDB tutorial how to
retrieve user credentials:

2. List replica set members:

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDB
metadata:
 name: replica-cluster
spec:
...
 replsets:
 - name: rs0
 size: 3
 externalNodes:
 - host: main-cluster-rs0-0.psmdb.svc.clusterset.local
 votes: 1
 priority: 1
 - host: main-cluster-rs0-1.psmdb.svc.clusterset.local
 votes: 1
 priority: 1
 - host: main-cluster-rs0-2.psmdb.svc.clusterset.local
 votes: 0
 priority: 0

 sharding:
 configsvrReplSet:
 externalNodes:
 - host: main-cluster-cfg-0.psmdb.svc.clusterset.local
 votes: 1
 priority: 1
 - host: main-cluster-cfg-1.psmdb.svc.clusterset.local
 votes: 1
 priority: 1
 - host: main-cluster-cfg-2.psmdb.svc.clusterset.local
 votes: 0
 priority: 0

$ kubectl apply -f deploy/cr-replica.yaml

$ kubectl exec -it main-cluster-rs0-0 -- mongosh -u databaseAdmin -p <dbAdminPassword>

rs.status().members

The members from both clusters appear in the list and the conDguration looks like this:

Sample output

{
 _id: 0,
 name: 'main-cluster-rs0-0.psmdb.svc.clusterset.local:27017',
 health: 1,
 state: 1,
 stateStr: 'PRIMARY',

},
{
 _id: 1,
 name: 'main-cluster-rs0-1.psmdb.svc.clusterset.local:27017',
 health: 1,
 state: 2,
 stateStr: 'SECONDARY',

},
{
 _id: 2,
 name: 'main-cluster-rs0-2.psmdb.svc.clusterset.local:27017',
 health: 1,
 state: 2,
 stateStr: 'SECONDARY',

},
{
 _id: 3,
 name: 'replica-cluster-rs0-0.psmdb.svc.clusterset.local:27017',
 health: 1,
 state: 2,
 stateStr: 'SECONDARY',

},
{
 _id: 4,
 name: 'replica-cluster-rs0-1.psmdb.svc.clusterset.local:27017',
 health: 1,
 state: 2,
 stateStr: 'SECONDARY',

},
{
 _id: 5,
 name: 'replica-cluster-rs0-2.psmdb.svc.clusterset.local:27017',
 health: 1,
 state: 2,
 stateStr: 'SECONDARY',

}

Next steps

Test services failover

8.3.4.4 Fail over services to the Replica site
Failing over services to the Replica site ensures your applications remain available if the Main site needs maintenance or becomes unavailable. You might need
to do this during planned maintenance windows or in response to unexpected outages. The following sections explain how to handle both planned and
unplanned failover scenarios.

Planned services switchover
You can switch over services to the Replica site while doing some planned maintenance on the Main site.

Here’s how to do it:

Fail over services in a disaster recovery scenario
A disaster can strike at any moment and the Main site may be down or unavailable. In this case, you must fail over the services to the Replica site.

Here’s how to do it:

Set the Main site to the unmanaged mode and change the Update strategy to RollingUpdate. Modify the deploy/cr-main.yaml Dle:1

spec:
 unmanaged: true
 updateStrategy: RollingUpdate

Apply the conDguration:2

kubectl apply -f deploy/cr-main.yaml

Put the Replica site in the managed mode:3

spec:
 unmanaged: false
 updateStrategy: SmartUpdate

Apply the conDguration:4

kubectl apply -f deploy/cr-replica.yaml

Connect to one of the Replica site Pods and check the replica set status. You should see that it has re-elected the new primary.5

Connect to one of the replica set Pods on the Replica site. Since you will be reconDguring the replica set, you must connect as the MongoDB clusterAdmin
user:

1

$ kubectl exec -it replica-cluster-rs0-0 -- mongosh -u clusterAdmin -p <clusterAdminPassword>

Check the current replica set status:2

rs.status().members

Sample output

{
 _id: 0,
 name: 'main-cluster-rs0-0.psmdb.svc.clusterset.local:27017',
 health: 0,
 state: 8,
 stateStr: '(not reachable/healthy)',
 uptime: 0,
 ...
 },

Retrieve and store the current conDguration in the variable:3

cfg = rs.config()

Override the member array to include the surviving members - the ones from the Replica site. For the following command replace the member indexes with
the ones you got from the rs.config() output:

4

cfg.members = [cfg.members[3], cfg.members[4], cfg.members[5]]

ReconDgure the replica set passing the updated member list:5

rs.reconfig(cfg, {force: true})

Check the updated conDguration:6

rs.status().members

Sample output

{
 _id: 3,
 name: 'replica-cluster-rs0-0.psmdb.svc.clusterset.local:27017',
 health: 1,
 state: 1,
 stateStr: 'PRIMARY'
 },
 {
 _id: 4,
 name: 'replica-cluster-rs0-1.psmdb.svc.clusterset.local:27017',
 health: 1,
 state: 2,
 stateStr: 'SECONDARY'
 },
 {
 _id: 5,
 name: 'replica-cluster-rs0-2.psmdb.svc.clusterset.local:27017',
 health: 1,
 state: 2,
 stateStr: 'SECONDARY'
 }

Repeat steps 1-6 for every shard’s replica set in your sharded cluster.7

Connect to the conDg server replica set Pod and repeat steps 1-6.8

Connect to the Replica site and check the replica set conDguration9

ReconDgure your MongoDB clients to connect to the Replica site.10

8.3.4.5 Backups with cross-site replication
Before the Operator version 1.19.0 Backups were supported for the primary (managed) cluster only. Now backups can be taken on primary and replica clusters.

Still, backups on cross-site conDgurations have some speciDcs.

Even though you can run backups in unmanaged clusters, you can’t run restores on them.

Even if the backup is started in primary (managed) cluster, most likely it will be taken from a secondary instance, even if such instance is on a separate
cluster, because Percona Backup for MongoDB (PBM) automatically assigns lower priority to primary member to avoid affecting the write performance. This
can be overwritten with custom PBM conDguration.

PBM conDguration is shared across all clusters. The Operator will reconDgure PBM every time it runs a backup, and setting PBM conDguration in one cluster
will affect other clusters too. For example, setting backup.configuration.backupOptions.oplogSpanMin to 2 in a secondary cluster will be applied to
primary cluster as well.

8.3.4.6 Splitting replica set across multiple data centers
Splitting the replica set of the database cluster over multiple Kubernetes clusters can be useful to get a fault-tolerant system in which all replicas are in different
data centers.

The Operator cannot deploy MongoDB replicas to other data centers, but this solution can be achieved with a number of Operator deployments, equal to the size
of your replica set. So, you will need at least 3 Operator instances: one Operator to control the replica set via cross-site replication, and at least two Operators to
bootstrap the unmanaged clusters. Each cluster will contain replica set with only one member, and the Main site will manage instances from other sites as
external nodes. All conDguration of the replica set is done manually.

The solution has the following limitations to consider:

setting it up involves a number of manual operations, and the same applies to scaling such a manually conDgured replica,

backups are supported on the Main site only, not on the Replica sites.

Configuring the Main site
You will use the externally reachable URI for each of your replica set instances, manually overwiriting its default local fully-qualiDed domain name (FQDN) in the
Custom Resouce manifest. Also you will need including all these host names into TLS certiDcates. So the Drst thing needed is the list of these externally
reachable names. In the above example we will use the following ones:

r1.percona.local:443 URI for the cluster-name-rs0-0 (1st replica set instance),

r2.percona.local:443 for the 2nd replica set instance,

r3.percona.local:443 for the 3rd replica set instance.

Following steps will allow you to prepare the Main site for cross-site replication, keeping in mind the multiple data centers deployment:

TLS certiDcates generated by the Operator are not suitable and it’s required to generate certiDcates manually on the Main site before creating a database cluster,
with all names from replsetOverrides and externalNodes .

1. Use TLS ceritDcates manual generation instruction to prepare TLS certiDcates with the host names from your prepared list.

2. Deploy your Main site as usual, with these manually generated certiDcates. Don’t forget to turn on Pods exposure on your Main cluster.

3. Now override hostname of the Drst replica in the replica set conDguration by using the replsets.replsetOverrides subsection in the Custom Resource
options manifest with the externally reachable endpoint from your externally reachable URI list:

The unsafeFlags.replsetSize option in the above example is needed to create replica set with less than 3 instances.

The actual approach to make the URI reachable from the outside of your Kubernetes culster depends on the exposure type. It is different in case of the
NodePort exposure , Load balancer of the cloud provider , etc. Operator won’t perform any validation for hostnames. It’s user’s responsibility to ensure
connectivity.

You can also add custom tags to the replset members, just to make their identication easier:

...
unsafeFlags:
 replsetSize: true
replsets:
- name: rs0
 size: 1
 replsetOverrides:
 cluster-name-rs0-0:
 host: r1.percona.local:443
 ...

Note

...
replsetOverrides:
 cluster-name-rs0-0:
 host: r1.percona.local:443
 tags:
 team: cloud
...

https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer

Configuring Replica sites

To conDgure Replica sites, you should deploy your Relica sites, repeating the following steps for each Kubernetes cluster you are adding:

1. Copy secrets from the Main site, rename them according to the cluster name you use on the Replica site (if needed), and apply.

cluster1-ssl (SSL certiDcates for client connections),

cluster1-ssl-internal (SSL certiDcates for replication),

cluster1-secrets (user credentials),

cluster1-mongodb-encryption-key (encryption key).

2. Deploy the database cluster on the Replica site. Don’t forgetting the following:

a. All Replica sites must be deployed with the unmanaged: true Custom Resource option. This will stop the Operator in the Replica cluster from touching
the MongoDB replset conDguration. Starting from this moment, only the Operator of the Main cluster will be able to modify it.

b. Backups must be disabled with the backup.enabaled: false Custom Resource option.

c. The updateStrategy Custom Resource option must be set to RollingUpdate or OnDelete .

d. In order to create a single-instance replica set, you will need to the unsafeFlags.replsetSize option to true as you did on the Main site.

3. Now add the new Replica site’s Pod to your Main site’s externalNodes subsection of the Custom Resource options manifest:

replsets:
- name: rs0
 size: 1
 replsetOverrides:
 cluster1-rs0-0:
 host: r1.percona.local:443
 externalNodes:
 - host: r2.percona.local:443
 votes: 1
 priority: 1

8.4 Monitor database with Percona Monitoring and Management
(PMM)
In this section you will learn how to monitor the health of Percona Server for MongoDB with Percona Monitoring and Management (PMM) .

The Operator supports both PMM version 2 and PMM version 3.

It determines which PMM server version you are using based on the authentication method you provide. For PMM 2, the Operator uses API keys for
authentication. For PMM 3, it uses service account tokens.

We recommend using the latest PMM 3.

PMM is a client/server application. It includes the PMM Server and the number of PMM Clients running on each node with the database you wish to
monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you connect to the PMM Server to see database metrics on a
number of dashboards.

PMM Server and PMM Client are installed separately.

Considerations
1. If you are using PMM server version 2, use a PMM client image compatible with PMM 2. If you are using PMM server version 3, use a PMM client image

compatible with PMM 3. Check Percona certiDed images for the right one.

2. If you speciDed both authentication methods for PMM server conDguration and they have non-empty values, priority goes to PMM 3.

3. For migration from PMM2 to PMM3, see PMM upgrade documentation . Also check the Automatic migration of API keys page.

Install PMM Server
You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual appliance, or in Kubernetes. Please refer to the o`cial PMM
documentation for the installation instructions.

Install PMM Client
PMM Client is installed as a side-car container in the database Pods in your Kubernetes-based environment. To install PMM Client, do the following:

Configure authentication

https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-client/connect-database/mongodb.html
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-server/index.html

Create a secret

Now you must pass the credentials to the Operator. To do so, create a Secret object.

1. Create a Secret conDguration Dle. You can use the deploy/secrets.yaml secrets Dle.

2. Create the Secrets object using the deploy/secrets.yaml Dle.

PMM3

PMM3 uses service accounts to control access to PMM server components and resources. To authenticate in PMM server, you need a service account token.
Generate a service account and token . Specify the Admin role for the service account.

When you create a service account token, you can select its lifetime: it can be either a permanent token that never expires or the one with the expiration date. PMM server cannot rotate
service account tokens after they expire. So you must take care of reconDguring PMM Client in this case.

PMM2

Get the PMM API key from PMM Server . The API key must have the role “Admin”. You need this key to authorize PMM Client within PMM Server.

The API key is not rotated automatically when it expires. You must manually recreate it and reconDgure the PMM Client.

Warning

 From PMM UI

Generate the PMM API key

 From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace <login>:<password>@<server_host> placeholders with your
real PMM Server login, password, and hostname in the following command:

$ PMM_SERVER_API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d '{"name":"operator", "role": "Admin"}'
"https://<login>:<password>@<server_host>/graph/api/auth/keys" | jq .key)

Warning

PMM 3

Specify the service account token as the PMM_SERVER_TOKEN value in the secrets Dle:

PMM 2

Specify the API key as the PMM_SERVER_API_KEY value in the secrets Dle:

apiVersion: v1
kind: Secret
metadata:
 name: my-cluster-name-secrets
type: Opaque
stringData:

 PMM_SERVER_TOKEN: ""

apiVersion: v1
kind: Secret
metadata:
 name: my-cluster-name-secrets
type: Opaque
stringData:

 PMM_SERVER_API_KEY: ""

https://github.com/percona/percona-server-mongodb-operator/blob/v1.21.1/deploy/secrets.yaml
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html?h=authe#generate-a-service-account-and-token
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

Deploy the PMM Client

1. Update the pmm section in the deploy/cr.yaml Dle:

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The PMM Server IP address should be resolvable and reachable
from within your cluster.

Check that the name of the Secret object that you created earlier is speciDed in the secrets.users Deld.

2. Apply the changes:

3. Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors on the previous steps:

Check the metrics
Let’s see how the collected data is visualized in PMM.

Enable profiling
Starting from the Operator version 1.12.0, MongoDB operation proDling is disabled by default. To analyze query execution on the PMM Query Analytics
dashboard, you should enable proDling explicitly. You can pass options to MongoDB in several ways.

This example shows how to pass the conDguration via the configuration subsection of the deploy/cr.yaml manifest.

$ kubectl apply -f deploy/secrets.yaml -n <namespace>

Expected output

secret/my-cluster-name-secrets created

secrets:
 users: my-cluster-name-secrets
pmm:
 enabled: true
 image: percona/pmm-client:2.44.1
 serverHost: monitoring-service

$ kubectl apply -f deploy/cr.yaml -n <namespace>

$ kubectl get pods -n <namespace>
$ kubectl logs <cluster-name>-rs0-0 -c pmm-client -n <namespace>

Log in to PMM server.1

Click MongoDB from the left-hand navigation menu. You land on the Instances Overview page.2

Select your cluster from the Clusters drop-down menu and the desired time range on the top of the page. You should see the metrics.3

Click MongoDB → Other dashboards to see the list of available dashboards that allow you to drill down to the metrics you are interested in.4

spec:
 ...
 replsets:
 - name: rs0
 size: 3
 configuration: |
 operationProfiling:
 slowOpThresholdMs: 200
 mode: slowOp
 rateLimit: 100

https://github.com/percona/percona-server-mongodb-operator/blob/v1.21.1/deploy/cr.yaml
https://docs.percona.com/percona-monitoring-and-management/3/use/qan/index.html
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-client/connect-database/mongodb.html#compare-query-source-methods

Optionally, you can specify additional parameters for the pmm-admin add mongodb command in the pmm.mongodParams and pmm.mongosParams keys for
mongod and mongos Pods respectively.

 Info: Note that the Operator automatically manages common MongoDB Service Monitoring parameters such as username, password, service-name, host,

etc. Assigning values to these parameters is not recommended and can negatively affect the functionality of the PMM setup carried out by the Operator.

When done, apply the edited deploy/cr.yaml Dle:

Update the secrets file
The deploy/secrets.yaml Dle contains all values for each key/value pair in a convenient plain text format. But the resulting Secrets Objects contains
passwords stored as base64-encoded strings. If you want to update the password Deld, you need to encode the new password into the base64 format and pass
it to the Secrets Object.

To encode a password or any other parameter, run the following command:

For example, to set the new PMM Server token in the my-cluster-name-secrets object, do the following:

$ kubectl apply -f deploy/cr.yaml

 on Linux

 on macOS

$ echo -n "password" | base64 --wrap=0

$ echo -n "password" | base64

 on Linux

 on macOS

$ kubectl patch secret/my-cluster-name-secrets -p '{"data":{"PMM_SERVER_TOKEN": '$(echo -n <new-token> | base64 --wrap=0)'}}'

$ kubectl patch secret/my-cluster-name-secrets -p '{"data":{"PMM_SERVER_TOKEN": '$(echo -n <new-token> | base64)'}}'

https://docs.percona.com/percona-monitoring-and-management/3/use/commands/pmm-admin.html?h=pmm+admin#__tabbed_1_1

8.5 Using sidecar containers
The Operator allows you to deploy additional (so-called sidecar) containers to the Pod. You can use this feature to run debugging tools, some speciDc monitoring
solutions, etc.

Custom sidecar containers can easily access other components of your cluster . Therefore they should be used carefully and by experienced users only.

Adding a sidecar container
You can add sidecar containers to Percona Distribution for MongoDB Replica Set, ConDg Servers, and mongos Pods. Just use sidecars subsection in the
replsets , sharding.configsvrReplSet , and sharding.mongos of the deploy/cr.yaml conDguration Dle. In this subsection, you should specify the name
and image of your container and possibly a command to run:

Apply your modiDcations as usual:

Running kubectl describe command for the appropriate Pod can bring you the information about the newly created container:

Getting shell access to a sidecar container
You can login to your sidecar container as follows:

Note

spec:
 replsets:

 sidecars:
 - image: busybox
 command: ["/bin/sh"]
 args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
 name: rs-sidecar-0

$ kubectl apply -f deploy/cr.yaml

$ kubectl describe pod my-cluster-name-rs0-0

Expected output

....
Containers:
....
rs-sidecar-0:
 Container ID: docker://f0c3437295d0ec819753c581aae174a0b8d062337f80897144eb8148249ba742
 Image: busybox
 Image ID: docker-pullable://busybox@sha256:139abcf41943b8bcd4bc5c42ee71ddc9402c7ad69ad9e177b0a9bc4541f14924
 Port: <none>
 Host Port: <none>
 Command:
 /bin/sh
 Args:
 -c
 while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done
 State: Running
 Started: Thu, 11 Nov 2021 10:38:15 +0300
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-fbrbn (ro)
....

$ kubectl exec -it my-cluster-name-rs0-0 -c rs-sidecar-0 -- sh
/ #

https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication

Mount volumes into sidecar containers
It is possible to mount volumes into sidecar containers.

Following subsections describe different volume types , which were tested with sidecar containers and are known to work. They allow either dynamically
provisioning volumes for sidecar containers or mounting existing volumes.

Persistent Volume

You can use Persistent volumes when you need dynamically provisioned storage which doesn’t depend on the Pod lifecycle. To use such volume, you should
claim durable storage with persistentVolumeClaim without specifying any non-important details.

The following example requests 1G storage with sidecar-volume-claim PersistentVolumeClaim, and mounts the correspondent Persistent Volume to the rs-
sidecar-0 container’s Dlesystem under the /volume0 directory:

Sidecar containers for mongos Pods have limited Persistent volumes support: sharding.mongos.sidecarPVCs option can be used if there is a single mongos in deployment or when
ReadWriteMany/ReadOnlyMany access modes are used (but these modes are available not in every storage).

Secret

You can use a secret volume to pass the information which needs additional protection (e.g. passwords), to the container. Secrets are stored with the
Kubernetes API and mounted to the container as RAM-stored Dles.

You can mount a secret volume via the sidecarVolumes subsection as follows:

The above example creates a sidecar-secret volume (based on already existing mysecret Secret object) and mounts it to the rs-sidecar-0 container’s
Dlesystem under the /secret directory.

...
sidecars:
- image: busybox
 command: ["/bin/sh"]
 args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
 name: rs-sidecar-0
 volumeMounts:
 - mountPath: /volume0
 name: sidecar-volume-claim
sidecarPVCs:
- apiVersion: v1
 kind: PersistentVolumeClaim
 metadata:
 name: sidecar-volume-claim
 spec:
 resources:
 requests:
 storage: 1Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce

Note

...
sidecars:
- image: busybox
 command: ["/bin/sh"]
 args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
 name: rs-sidecar-0
 volumeMounts:
 - mountPath: /secret
 name: sidecar-secret
sidecarVolumes:
- name: sidecar-secret
 secret:
 secretName: mysecret

https://kubernetes.io/docs/concepts/storage/volumes/#volume-types
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/volumes/#persistentvolumeclaim
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/configuration/secret/

Don’t forget you need to create a Secret Object before you can use it.

configMap

You can use a conDgMap volume to pass some conDguration data to the container. Secrets are stored with the Kubernetes API and mounted to the container
as RAM-stored Dles.

You can mount a conDgMap volume via the sidecarVolumes subsection as follows:

The above example creates a sidecar-config volume (based on already existing myconfigmap conDgMap object) and mounts it to the rs-sidecar-0
container’s Dlesystem under the /config directory.

Don’t forget you need to create a conDgMap Object before you can use it.

Note

...
sidecars:
- image: busybox
 command: ["/bin/sh"]
 args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
 name: rs-sidecar-0
 volumeMounts:
 - mountPath: /config
 name: sidecar-config
sidecarVolumes:
- name: sidecar-config
 configMap:
 name: myconfigmap

Note

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/storage/volumes/#configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap

8.6 Pause/resume Percona Server for MongoDB
There may be external situations when it is needed to shutdown the cluster for a while and then start it back up (some works related to the maintenance of the
enterprise infrastructure, etc.).

The deploy/cr.yaml Dle contains a special spec.pause key for this. Setting it to true gracefully stops the cluster:

To start the cluster after it was shut down just revert the spec.pause key to false .

spec:

 pause: true

9 Troubleshooting

9.1 Initial troubleshooting
Percona Operator for MongoDB uses Custom Resources to manage options for the various components of the cluster.

PerconaServerMongoDB Custom Resource with Percona Server for MongoDB options (it has handy psmdb shortname also),

PerconaServerMongoDBBackup and PerconaServerMongoDBRestore Custom Resources contain options for Percona Backup for MongoDB used to backup
Percona Server for MongoDB and to restore it from backups (psmdb-backup and psmdb-restore shortnames are available for them).

The Drst thing you can check for the Custom Resource is to query it with kubectl get command:

The Custom Resource should have Ready status.

You can check which Percona’s Custom Resources are present and get some information about them as follows:

Check the Pods
If Custom Resource is not getting Ready status, it makes sense to check individual Pods. You can do it as follows:

The above command provides the following insights:

READY indicates how many containers in the Pod are ready to serve the tra`c. In the above example, my-cluster-name-rs0-0 Pod has all two containers
ready (2/2). For an application to work properly, all containers of the Pod should be ready.

STATUS indicates the current status of the Pod. The Pod should be in a Running state to conDrm that the application is working as expected. You can Dnd
out other possible states in the o`cial Kubernetes documentation .

RESTARTS indicates how many times containers of Pod were restarted. This is impacted by the Container Restart Policy . In an ideal world, the restart
count would be zero, meaning no issues from the beginning. If the restart count exceeds zero, it may be reasonable to check why it happens.

AGE : Indicates how long the Pod is running. Any abnormality in this value needs to be checked.

$ kubectl get psmdb

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

Note

$ kubectl api-resources | grep -i percona

Expected output

perconaservermongodbbackups psmdb-backup psmdb.percona.com/v1 true PerconaServerMongoDBBackup
perconaservermongodbrestores psmdb-restore psmdb.percona.com/v1 true PerconaServerMongoDBRestore
perconaservermongodbs psmdb psmdb.percona.com/v1 true PerconaServerMongoDB

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE
my-cluster-name-cfg-0 2/2 Running 0 11m
my-cluster-name-cfg-1 2/2 Running 1 10m
my-cluster-name-cfg-2 2/2 Running 1 9m
my-cluster-name-mongos-0 1/1 Running 0 11m
my-cluster-name-mongos-1 1/1 Running 0 11m
my-cluster-name-mongos-2 1/1 Running 0 11m
my-cluster-name-rs0-0 2/2 Running 0 11m
my-cluster-name-rs0-1 2/2 Running 0 10m
my-cluster-name-rs0-2 2/2 Running 0 9m
percona-server-mongodb-operator-665cd69f9b-xg5dl 1/1 Running 0 37m

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy

You can Dnd more details about a speciDc Pod using the kubectl describe pods <pod-name> command.

This gives a lot of information about containers, resources, container status and also events. So, describe output should be checked to see any abnormalities.

$ kubectl describe pods my-cluster-name-rs0-0

Expected output

...
Name: my-cluster-name-rs0-0
Namespace: default
...
Controlled By: StatefulSet/my-cluster-name-rs0
Init Containers:
 mongo-init:
...
Containers:
 mongod:
...
 Restart Count: 0
 Limits:
 cpu: 300m
 memory: 500M
 Requests:
 cpu: 300m
 memory: 500M
 Liveness: exec [/opt/percona/mongodb-healthcheck k8s liveness --ssl --sslInsecure --sslCAFile /etc/mongodb-ssl/ca.crt --sslPEMKeyFile
/tmp/tls.pem --startupDelaySeconds 7200] delay=60s timeout=10s period=30s #success=1 #failure=4
 Readiness: tcp-socket :27017 delay=10s timeout=2s period=3s #success=1 #failure=8
 Environment Variables from:
 internal-my-cluster-name-users Secret Optional: false
 Environment:
...
 Mounts:
...
Volumes:
...
Events: <none>

9.2 Exec into the containers
If you want to examine the contents of a container “in place” using remote access to it, you can use the kubectl exec command. It allows you to run any
command or just open an interactive shell session in the container. Of course, you can have shell access to the container only if container supports it and has a
“Running” state.

In the following examples we will access the container mongod of the my-cluster-name-rs0-0 Pod.

Run date command:

You will see an error if the command is not present in a container. For example, trying to run the time command, which is not present in the container, by
executing kubectl exec -ti my-cluster-name-rs0-0 -c mongod -- time would show the following result:

Print /var/log/mongo/mongod.log Dle to a terminal:

Similarly, opening an Interactive terminal, executing a pair of commands in the container, and exiting it may look as follows:

Avoid the restart-on-fail loop for Percona Server for MongoDB containers
The restart-on-fail loop takes place when the container entry point fails (e.g. mongod crashes). In such a situation, Pod is continuously restarting. Continuous
restarts prevent to get console access to the container, and so a special approach is needed to make Dxes.

You can prevent such inDnite boot loop by putting the Percona Server for MongoDB containers into the “inDnite sleep” without starting mongod. This behavior of
the container entry point is triggered by the presence of the /data/db/sleep-forever Dle. The feature is available for both replica set and confg server Pods.

For example, you can do it for the mongod container of an appropriate Percona Server for MongoDB Pod as follows:

If mongod container can’t start, you can use backup-agent container instead:

The instance will restart automatically and run in its usual way as soon as you remove this Dle (you can do it with a command similar to the one you have used to
create the Dle, just substitute touch to rm in it).

$ kubectl exec -ti my-cluster-name-rs0-0 -c mongod -- date

Expected output

Thu Nov 24 10:01:17 UTC 2022

OCI runtime exec failed: exec failed: unable to start container process: exec: "time": executable file not found in $PATH:
unknown command terminated with exit code 126

$ kubectl exec -ti my-cluster-name-rs0-0 -c mongod -- cat /var/log/mongo/mongod.log

$ kubectl exec -ti my-cluster-name-rs0-0 -c mongod -- bash
[mongodb@my-cluster-name-rs0-0 db]$ cat /etc/hostname
my-cluster-name-rs0-0
[mongodb@my-cluster-name-rs0-0 db]$ ls /var/log/mongo/mongod.log
/var/log/mongo/mongod.log
[mongodb@my-cluster-name-rs0-0 db]$ exit
exit
$

$ kubectl exec -it my-cluster-name-cfg-0 -c mongod -- sh -c 'touch /data/db/sleep-forever'

$ kubectl exec -it my-cluster-name-cfg-0 -c backup-agent -- sh -c 'touch /data/db/sleep-forever'

9.3 Check the Logs
Logs provide valuable information. It makes sense to check the logs of the database Pods and the Operator Pod. Following _ags are helpful for checking the
logs with the kubectl logs command:

Flag Description

--container=

<container-name>

Print log of a speciDc container in case of multiple containers in a Pod

--follow Follows the logs for a live output

--since=<time> Print logs newer than the speciDed time, for example: --since="10s"

--timestamps Print timestamp in the logs (timezone is taken from the container)

--previous Print previous instantiation of a container. This is extremely useful in case of container restart, where there is a need to check the logs on why the
container restarted. Logs of previous instantiation might not be available in all the cases.

In the following examples we will access containers of the my-cluster-name-rs0-0 Pod.

Check logs of the mongod container:

Check logs of the pmm-client container:

Filter logs of the mongod container which are not older than 600 seconds:

Check logs of a previous instantiation of the mongod container, if any:

Check logs of the mongod container, parsing the output with jq JSON processor :

Changing logs representation
You can also change the representation of logs: either use structured representation, which produces a parsing-friendly JSON, or use traditional console-friendly
logging with speciDc level. Changing representation of logs is possible by editing the deploy/operator.yml Dle, which sets the following environment variables
with self-speaking names and values:

Cluster-level logging
In a distributed Kubernetes environment, it’s often di`cult to debug issues because logs are tied to the lifecycle of individual Pods and containers. If a Pod fails
and restarts, its logs are lost, making it hard to identify the root cause of an issue.

$ kubectl logs my-cluster-name-rs0-0 -c mongod

$ kubectl logs my-cluster-name-rs0-0 -c pmm-client

$ kubectl logs my-cluster-name-rs0-0 -c mongod --since=600s

$ kubectl logs my-cluster-name-rs0-0 -c mongod --previous

$ kubectl logs my-cluster-name-rs0-0 -c mongod -f | jq -R 'fromjson?'

env:
 ...
 name: LOG_STRUCTURED
 value: 'false'
 name: LOG_LEVEL
 value: INFO
 ...

https://stedolan.github.io/jq/

Percona Operator for MongoDB addresses this challenge with cluster-level logging, ensuring logs are stored persistently, independent of the Pods. This
approach helps ensure that logs are available for review even after a Pod restarts.

The Operator collects logs using Fluent Bit - a lightweight log processor, which supports many output plugins and has broad forwarding capabilities. Fluent
Bit runs as a sidecar container within each database Pod. It collects logs from the primary mongod container, adds metadata, and stores them in a single Dle in a
dedicated log-speciDc Persistent Volume Claim (PVC) at /data/db/logs/ . This allows logs to survive Pod restarts and be accessed for later debugging.

Logs are also streamed to standard output, making them accessible via the kubectl logs command for quick troubleshooting:

Currently, logs are collected only for the mongod instance. All other logs are ephemeral, meaning they will not persist after a Pod restart. Logs are stored for 7
days and are rotated afterwards.

Configure log collector

Cluster-level logging is enabled by default and is controlled with the logcollector.enabled key in the deploy/cr.yaml Custom Resource manifest.

You can additionally conDgure Fluent Bit using the logcollector.configuration subsection in the deploy/cr.yaml Custom Resource manifest. This allows
you to deDne custom Dlters and output plugins to suit your speciDc logging and monitoring needs.

Note that when you add a new conDguration to the logcollector.configuration , this triggers a Smart Update.

$ kubectl logs my-cluster-name-rs0-0 -c logs

https://fluentbit.io/

9.4 Special debug images
For the cases when Pods are failing for some reason or just show abnormal behavior, the Operator can be used with a special debug image of the Percona Server
for MongoDB, which has the following speciDcs:

it avoids restarting on fail,

it contains additional tools useful for debugging (sudo, telnet, gdb, mongodb-debuginfo package, etc.),

extra verbosity is added to the mongodb daemon.

Images are available for Percona server for MongoDB versions 5.0 and 6.0, not for 7.0.

Particularly, using this image is useful if the container entry point fails (mongod crashes). In such a situation, Pod is continuously restarting. Continuous restarts
prevent to get console access to the container, and so a special approach is needed to make Dxes.

To use the debug image instead of the normal one, set the following image name for the image key in the deploy/cr.yaml conDguration Dle:

percona/percona-server-mongodb:6.0.25-20-debug

The Pod should be restarted to get the new image.

When the Pod is continuously restarting, you may have to delete it to apply image changes.

Note

10 HOWTOs

10.1 Install Percona Server for MongoDB with customized parameters
You can customize the conDguration of Percona Server for MongoDB and install it with customized parameters.

To check available conDguration options, see deploy/cr.yaml and Custom Resource Options.

Configure ports for MongoDB cluster components
By default, the Operator starts Percona Server for MongoDB with the default port 27017 for all cluster components: mongod , mongos and configsvrReplSet
Pods. Starting with version 1.20.0, you can start a new cluster with custom ports for all components or for a speciDc one.

kubectl

To customize the conDguration, do the following:

1. Clone the repository with all manifests and source code by executing the following command:

2. Edit the required options and apply the modiDed deploy/cr.yaml Dle as follows:

Helm

To install Percona Server for MongoDB with custom parameters, use the following command:

You can pass any of the Operator’s Custom Resource options as a --set key=value[,key=value] argument.

The following example deploys a Percona Server for MongoDB Cluster in the psmdb namespace, with disabled backups and 20 Gi storage:

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator

$ kubectl apply -f deploy/cr.yaml

$ helm install --set key=value

Command line

YAML `le

You can specify customized options in a YAML Dle instead of using separate command line parameters. The resulting Dle similar to the following example looks
as follows:

Apply the resulting YAML Dle as follows:

$ helm install my-db percona/psmdb-db --version 1.21.1 --namespace psmdb \
 --set "replsets.rs0.name=rs0" --set "replsets.rs0.size=3" \
 --set "replsets.rs0.volumeSpec.pvc.resources.requests.storage=20Gi" \
 --set backup.enabled=false --set sharding.enabled=false

values.yaml

allowUnsafeConfigurations: true
sharding:
 enabled: false
replsets:
- name: rs0
 size: 3
 volumeSpec:
 pvc:
 resources:
 requests:
 storage: 2Gi
backup:
 enabled: false

$ helm install my-db percona/psmdb-db --namespace psmdb -f values.yaml

https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.21.1/deploy/cr.yaml
https://github.com/percona/percona-helm-charts/tree/main/charts/psmdb-db#installing-the-chart

Here’s how to do it.

kubectl

1. Edit the deploy/cr.yaml Dle and specify the following conDguration:

2. Apply the deploy/cr.yaml to deploy Percona Server for MongoDB:

Helm

1. Create a yaml Dle with the desired conDguration. For example, values.yaml :

2. Install Percona Server for MongoDB with the speciDed conDguration:

spec:
 ...
 replsets:
 - name: rs0
 configuration: |
 net:
 port: 27018
 sharding:
 configsvrReplSet:
 configuration: |
 net:
 port: 27019
 mongos:
 configuration: |
 net:
 port: 27017

$ kubectl apply -f deploy/cr.yaml

values.yaml

replsets:
 rs0:
 name: rs0
 configuration: |
 net:
 port: 27018
sharding:
 configsvrReplSet:
 configuration: |
 net:
 port: 27019
 mongos:
 configuration: |
 net:
 port: 27017

$ helm install my-db percona/psmdb-db --namespace psmdb -f values.yaml

10.2 How to integrate Percona Operator for MongoDB with OpenLDAP
LDAP services provided by software like OpenLDAP, Microsoft Active Directory, etc. are widely used by enterprises to control information about users, systems,
networks, services and applications and the corresponding access rights for the authentication/authorization process in a centralized way.

The following guide covers a simple integration of the already-installed OpenLDAP server with Percona Distribution for MongoDB and the Operator. You can
know more about LDAP concepts and LDIF Dles used to conDgure it, and Dnd how to install and conDgure OpenLDAP in the o`cial OpenLDAP and Percona
Server for MongoDB documentation.

The OpenLDAP side
You can add needed OpenLDAP settings will the following LDIF portions:

Also a read-only user should be created for the database-issued user lookups. If everything is done correctly, the following command should work, resetting the
percona user password:

If you are not sure about the approach to make references between user and group objects, OpenDAP overlays provide one of the possible ways to go.

The MongoDB and Operator side
The following steps will look different depending on whether sharding is on (the default behavior) or off.

If sharding is off

In order to get MongoDB connected with OpenLDAP in case of a a non-sharded (ReplicaSet) MongoDB cluster we need to conDgure two things:

Mongod

Internal mongodb role

Create conDguration Secrets for mongod:

0-percona-ous.ldif: |-
 dn: ou=perconadba,dc=ldap,dc=local
 objectClass: organizationalUnit
 ou: perconadba
1-percona-users.ldif: |-
 dn: uid=percona,ou=perconadba,dc=ldap,dc=local
 objectClass: top
 objectClass: account
 objectClass: posixAccount
 objectClass: shadowAccount
 cn: percona
 uid: percona
 uidNumber: 1100
 gidNumber: 100
 homeDirectory: /home/percona
 loginShell: /bin/bash
 gecos: percona
 userPassword: {crypt}x
 shadowLastChange: -1
 shadowMax: -1
 shadowWarning: -1
2-group-cn.ldif: |-
 dn: cn=admin,ou=perconadba,dc=ldap,dc=local
 cn: admin
 objectClass: groupOfUniqueNames
 objectClass: top
 ou: perconadba
 uniqueMember: uid=percona,ou=perconadba,dc=ldap,dc=local

$ ldappasswd -s percona -D "cn=admin,dc=ldap,dc=local" -w password -x "uid=percona,ou=perconadba,dc=ldap,dc=local"

Note

my_mongod.conf

https://en.wikipedia.org/wiki/LDAP_Data_Interchange_Format
https://www.openldap.org/doc/admin26/
https://docs.percona.com/percona-server-for-mongodb/latest/authentication.html
https://en.wikipedia.org/wiki/LDAP_Data_Interchange_Format
https://www.openldap.org/doc/admin24/overlays.html

This fragment provides mongod with LDAP-speciDc parameters, such as FQDN of the LDAP server (server), explicit lookup user, domain rules, etc.

Put the snippet on you local machine and create a Kubernetes Secret object named based on your MongoDB cluster name:

Next step is to start the MongoDB cluster up as it’s described in Install Percona server for MongoDB on Kubernetes. On successful completion of the steps from
this doc, we are to proceed with setting the roles for the ‘external’ (managed by LDAP) user inside the MongoDB. For this, log into MongoDB as administrator:

When logged in, execute the following:

security:
 authorization: "enabled"
 ldap:
 authz:
 queryTemplate: '{USER}?memberOf?base'
 servers: "openldap"
 transportSecurity: none
 bind:
 queryUser: "cn=readonly,dc=ldap,dc=local"
 queryPassword: "password"
 userToDNMapping:
 '[
 {
 match : "(.+)",
 ldapQuery: "OU=perconadba,DC=ldap,DC=local??sub?(uid={0})"
 }
]'
setParameter:
 authenticationMechanisms: 'PLAIN,SCRAM-SHA-1'

Note

$ kubectl create secret generic <your_cluster_name>-rs0-mongod --from-file=mongod.conf=my_mongod.conf

$ mongo "mongodb+srv://userAdmin:<userAdmin_password>@<your_cluster_name>-rs0.<your_namespace>.svc.cluster.local/admin?
replicaSet=rs0&ssl=false"

mongos> db.getSiblingDB("admin").createRole(
{
 role: "cn=admin,ou=perconadba,dc=ldap,dc=local",
 privileges: [],
 roles : [
 {
 "role" : "readAnyDatabase",
 "db" : "admin"
 },
 {
 "role" : "dbAdminAnyDatabase",
 "db" : "admin"
 },
 {
 "role" : "clusterMonitor",
 "db" : "admin"
 },
 {
 "role" : "readWriteAnyDatabase",
 "db" : "admin"
 },
 {
 "role" : "restore",
 "db" : "admin"
 },
 {
 "role" : "backup",
 "db" : "admin"
 }
],
}
)

Extra roles listed in the above example are just to show more than one possible variant.

Now the new percona user created inside OpenLDAP is able to login to MongoDB as administrator. Verify whether the user role has been identiDed correctly
with the following command:

When logged in, execute the following:

The output should be like follows:

If sharding is on

In order to get MongoDB connected with OpenLDAP in this case we need to conDgure three things:

Note

$ mongo --username percona --password 'percona' --authenticationMechanism 'PLAIN' --authenticationDatabase '$external' --host
<mongodb-rs-endpoint> --port 27017

mongos> db.runCommand({connectionStatus:1})

{
 "authInfo" : {
 "authenticatedUsers" : [
 {
 "user" : "percona",
 "db" : "$external"
 }
],
 "authenticatedUserRoles" : [
 {
 "role" : "restore",
 "db" : "admin"
 },
 {
 "role" : "readAnyDatabase",
 "db" : "admin"
 },
 {
 "role" : "clusterMonitor",
 "db" : "admin"
 },
 {
 "role" : "dbAdminAnyDatabase",
 "db" : "admin"
 },
 {
 "role" : "backup",
 "db" : "admin"
 },
 {
 "role" : "cn=admin,ou=perconadba,dc=ldap,dc=local",
 "db" : "admin"
 },
 {
 "role" : "readWriteAnyDatabase",
 "db" : "admin"
 }
]
 },
 "ok" : 1,
 "$clusterTime" : {
 "clusterTime" : Timestamp(1663067287, 4),
 "signature" : {
 "hash" : BinData(0,"ZaLGSVj4ZwZrngXZSOqXB5rx+oo="),
 "keyId" : NumberLong("7142816031004688408")
 }
 },
 "operationTime" : Timestamp(1663067287, 4)
}
mongos>

Mongod

Internal mongodb role

Mongos

Both the routing interface (mongos) and the conDguraion ReplicaSet (mongod) have to be conDgured to make the LDAP server a part of the
Authentication/Authorization chain.

mongos is just a router between shards and underlying database instances, and conDguration ReplicaSet is responsible for keeping information about database users and roles. Thus,
the router can perform only authentication, while authorization is the responsibility of the conDguration ReplicaSet.

Create conDguration Secrets for the router and the conDguration ReplicaSet respectively.

Secret for the router should look as follows:

Put the snippet on you local machine and create a Kubernetes Secret object named based on your MongoDB cluster name:

Secret for the conDguration ReplicaSet should look as follows:

Put the snippet on you local machine and create a Kubernetes Secret object named based on your MongoDB cluster name:

Both Dles are pretty much the same except the authz subsection, which is only present for the conDguration ReplicaSet.

Note

my_mongos.conf

security:
 ldap:
 servers: "openldap"
 transportSecurity: none
 bind:
 queryUser: "cn=readonly,dc=ldap,dc=local"
 queryPassword: "password"
 userToDNMapping:
 '[
 {
 match : "(.+)",
 ldapQuery: "OU=perconadba,DC=ldap,DC=local??sub?(uid={0})"
 }
]'
setParameter:
 authenticationMechanisms: 'PLAIN,SCRAM-SHA-1'

$ kubectl create secret generic <your_cluster_name>-mongos --from-file=mongos.conf=my_mongos.conf

my_mongod.conf

security:
 authorization: "enabled"
 ldap:
 authz:
 queryTemplate: '{USER}?memberOf?base'
 servers: "openldap"
 transportSecurity: none
 bind:
 queryUser: "cn=readonly,dc=ldap,dc=local"
 queryPassword: "password"
 userToDNMapping:
 '[
 {
 match : "(.+)",
 ldapQuery: "OU=perconadba,DC=ldap,DC=local??sub?(uid={0})"
 }
]'
setParameter:
 authenticationMechanisms: 'PLAIN,SCRAM-SHA-1'

$ kubectl create secret generic <your_cluster_name>-cfg-mongod --from-file=mongod.conf=my_mongod.conf

Next step is to start the MongoDB cluster up as it’s described in Install Percona server for MongoDB on Kubernetes. On successful completion of the steps from
this doc, we are to proceed with setting the roles for the ‘external’ (managed by LDAP) user inside the MongoDB. For this, log into MongoDB as administrator:

When logged in, execute the following:

Extra roles listed in the above example are just to show more than one possible variant.

Now the new percona user created inside OpenLDAP is able to login to MongoDB as administrator. Verify whether the user role has been identiDed correctly
with the following command:

When logged in, execute the following:

The output should be like follows:

$ mongo "mongodb://userAdmin:<userAdmin_password>@<your_cluster_name>-mongos.<your_namespace>.svc.cluster.local/admin?
ssl=false"

mongos> db.getSiblingDB("admin").createRole(
{
 role: "cn=admin,ou=perconadba,dc=ldap,dc=local",
 privileges: [],
 roles : [
 {
 "role" : "readAnyDatabase",
 "db" : "admin"
 },
 {
 "role" : "dbAdminAnyDatabase",
 "db" : "admin"
 },
 {
 "role" : "clusterMonitor",
 "db" : "admin"
 },
 {
 "role" : "readWriteAnyDatabase",
 "db" : "admin"
 },
 {
 "role" : "restore",
 "db" : "admin"
 },
 {
 "role" : "backup",
 "db" : "admin"
 }
],
}
)

Note

$ mongo --username percona --password 'percona' --authenticationMechanism 'PLAIN' --authenticationDatabase '$external' --host
<your_cluster_name>-mongos --port 27017

mongos> db.runCommand({connectionStatus:1})

Using LDAP over TLS connection
LDAP over TLS allows you to use Transport Layer Security, encrypting your communication between MongoDB and OpenLDAP server.

Here are the needed modiDcations to The MongoDB and Operator side subsection which will enable it:

1. First, create a secret that contains the SSL certiDcate to connect to LDAP. The following example creates it from the Dle with CA certiDcate (the one you use
in /etc/openldap/ldap.conf), naming the new secret my-ldap-secret :

2. Set the secrets.ldapSecret Custom Resource option to the name of your newly created secret. Your modiDed deploy/cr.yaml may look as follows:

3. It is also necessary to change the value of transportSecurity to tls in mongod and mongos conDgurations. The conDguration is similar to one described at
the The MongoDB and Operator side subsection:

{
 "authInfo" : {
 "authenticatedUsers" : [
 {
 "user" : "percona",
 "db" : "$external"
 }
],
 "authenticatedUserRoles" : [
 {
 "role" : "restore",
 "db" : "admin"
 },
 {
 "role" : "readAnyDatabase",
 "db" : "admin"
 },
 {
 "role" : "clusterMonitor",
 "db" : "admin"
 },
 {
 "role" : "dbAdminAnyDatabase",
 "db" : "admin"
 },
 {
 "role" : "backup",
 "db" : "admin"
 },
 {
 "role" : "cn=admin,ou=perconadba,dc=ldap,dc=local",
 "db" : "admin"
 },
 {
 "role" : "readWriteAnyDatabase",
 "db" : "admin"
 }
]
 },
 "ok" : 1,
 "$clusterTime" : {
 "clusterTime" : Timestamp(1663067287, 4),
 "signature" : {
 "hash" : BinData(0,"ZaLGSVj4ZwZrngXZSOqXB5rx+oo="),
 "keyId" : NumberLong("7142816031004688408")
 }
 },
 "operationTime" : Timestamp(1663067287, 4)
}
mongos>

$ kubectl create secret generic my-ldap-secret --from-file=ca.crt=ldap-ca.pem

...
 secrets:
 ...
 ldapSecret: my-ldap-secret

https://www.openldap.org/faq/data/cache/185.html
https://docs.percona.com/percona-operator-for-mongodb/ldap.html#the-mongodb-and-operator-side
https://docs.percona.com/percona-operator-for-mongodb/ldap.html#the-mongodb-and-operator-side

Changed mongod conDguration should look as follows:

``` yaml title="my_mongod.conf"  hl_lines="7"
security:
  authorization: "enabled"
  ldap:
    authz:
      queryTemplate: '{USER}?memberOf?base'
    servers: "openldap"
    transportSecurity: tls
    bind:
      queryUser: "cn=readonly,dc=ldap,dc=local"
      queryPassword: "password"
    userToDNMapping:
      '[
          {
            match : "(.+)",
            ldapQuery: "OU=perconadba,DC=ldap,DC=local??sub?(uid={0})"
          }
   ]'
setParameter:
  authenticationMechanisms: 'PLAIN,SCRAM-SHA-1'
```

If **sharding is on**, you will also need to change mongos configuration:

```yaml title="my_mongos.conf" hl_lines="4"
security:
  ldap:
    servers: "openldap"
    transportSecurity: tls
    bind:
      queryUser: "cn=readonly,dc=ldap,dc=local"
      queryPassword: "password"
    userToDNMapping:
      '[
          {
            match : "(.+)",
            ldapQuery: "OU=perconadba,DC=ldap,DC=local??sub?(uid={0})"
          }
    ]'
setParameter:
  authenticationMechanisms: 'PLAIN,SCRAM-SHA-1'
```


10.3 Use Docker images from a custom registry
Using images from a private Docker registry may required for privacy, security or other reasons. In these cases, Percona Operator for MongoDB allows the use of
a custom registry This following example of the Operator deployed in the OpenShift environment demonstrates the process:

1. Log into the OpenShift and create a project.

2. You need obtain the following objects to conDgure your custom registry access:

A user token

the registry IP address

You can view the token with the following command:

The following command returns the registry IP address:

3. Use the user token and the registry IP address to login to the registry:

4. Use the Docker commands to pull the needed image by its SHA digest:

$ oc login

Expected output

Authentication required for https://192.168.1.100:8443 (openshift)
Username: admin
Password:
Login successful.

$ oc new-project psmdb

Expected output

Now using project "psmdb" on server "https://192.168.1.100:8443".

$ oc whoami -t

Expected output

ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s

$ kubectl get services/docker-registry -n default

Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
docker-registry ClusterIP 172.30.162.173 <none> 5000/TCP 1d

$ docker login -u admin -p ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s 172.30.162.173:5000

Expected output

Login Succeeded

$ docker pull docker.io/perconalab/percona-server-
mongodb@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0

You can Dnd correct names and SHA digests in the current list of the Operator-related images o`cially certiDed by Percona.

5. The following method can push an image to the custom registry for the example OpenShift psmdb project:

w. Verify the image is available in the OpenShift registry with the following command:

7. When the custom registry image is available, edit the the image: option in deploy/operator.yaml conDguration Dle with a Docker Repo + Tag string (it
should look like docker-registry.default.svc:5000/psmdb/percona-server-mongodb:7.0.24-13)

If the registry requires authentication, you can specify the imagePullSecrets option for all images.

x. Repeat steps 3-5 for other images, and update corresponding options in the deploy/cr.yaml Dle.

Don’t forget to set upgradeoptions.apply option to Disabled . Otherwise Smart Upgrade functionality will try using the image recommended by the Version Service instead of the
custom one.

9. Now follow the standard Percona Operator for MongoDB installation instruction.

Expected output

Trying to pull repository docker.io/perconalab/percona-server-mongodb ...
sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0: Pulling from docker.io/perconalab/percona-server-mongodb
Digest: sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0
Status: Image is up to date for docker.io/perconalab/percona-server-
mongodb@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0

$ docker tag \
 docker.io/perconalab/percona-server-mongodb@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0 \
 172.30.162.173:5000/psmdb/percona-server-mongodb:7.0.24-13
$ docker push 172.30.162.173:5000/psmdb/percona-server-mongodb:7.0.24-13

$ oc get is

Expected output

NAME DOCKER REPO TAGS UPDATED
percona-server-mongodb docker-registry.default.svc:5000/psmdb/percona-server-mongodb 7.0.24-13 2 hours ago

Note

Note

10.4 Creating a private S3-compatible cloud for backups
As it is mentioned in backups, any cloud storage which implements the S3 API can be used for backups. The one way to setup and implement the S3 API storage
on Kubernetes or OpenShift is Minio - the S3-compatible object storage server deployed via Docker on your own infrastructure.

Setting up Minio to be used with Percona Operator for MongoDB backups involves the following steps:

1. Install Minio in your Kubernetes or OpenShift environment and create the correspondent Kubernetes Service as follows:

Don’t forget to substitute default some-access-key and some-secret-key strings in this command with actual unique key values. The values can be used
later for access control. The storageClass option is needed if you are using the special Kubernetes Storage Class for backups. Otherwise, this setting
may be omitted. You may also notice the MINIO_REGION value which is may not be used within a private cloud. Use the same region value here and on later
steps (us-east-1 is a good default choice).

2. Create an S3 bucket for backups:

This command creates the bucket named operator-testing with the selected access and secret keys (substitute some-access-key and some-secret-
key with the values used on the previous step).

3. Now edit the backup section of the deploy/cr.yaml Dle to set proper values for the bucket (the S3 bucket for backups created on the previous step),
region , credentialsSecret and the endpointUrl (which should point to the previously created Minio Service).

The option which should be specially mentioned is credentialsSecret which is a Kubernetes secret for backups. Sample backup-s3.yaml can be
used to create this secret object. Check that the object contains the proper name value and is equal to the one speciDed for credentialsSecret , i.e. my-
cluster-name-backup-minio in the backup to Minio example, and also contains the proper AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY keys.
After you have Dnished editing the Dle, the secrets object are created or updated when you run the following command:

4. When the setup process is completed, making the backup is based on a script. Following example illustrates how to make an on-demand backup:

$ helm install \
 --name minio-service \
 --version 8.0.5 \
 --set accessKey=some-access-key \
 --set secretKey=some-secret-key \
 --set service.type=ClusterIP \
 --set configPath=/tmp/.minio/ \
 --set persistence.size=2G \
 --set environment.MINIO_REGION=us-east-1 \
 stable/minio

$ kubectl run -i --rm aws-cli --image=perconalab/awscli --restart=Never -- \
 bash -c 'AWS_ACCESS_KEY_ID=some-access-key \
 AWS_SECRET_ACCESS_KEY=some-secret-key \
 AWS_DEFAULT_REGION=us-east-1 \
 /usr/bin/aws \
 --endpoint-url http://minio-service:9000 \
 s3 mb s3://operator-testing'

...
backup:
 enabled: true
 version: 0.3.0
 ...
 storages:
 minio:
 type: s3
 s3:
 bucket: operator-testing
 region: us-east-1
 credentialsSecret: my-cluster-name-backup-minio
 endpointUrl: http://minio-service:9000
 ...

$ kubectl apply -f deploy/backup-s3.yaml

https://www.minio.io/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup-s3.yaml

Don’t forget to specify the name of your cluster instead of the <cluster-name> part of the Backup Coordinator URL (the cluster name is speciDed in the
deploy/cr.yaml Dle). Also substitute <storage> with the actual storage name located in a subsection inside of the backups in the deploy/cr.yaml Dle.
In the earlier example this value is minio .

5. To restore a previously saved backup you must specify the backup name. With the proper Backup Coordinator URL and storage name, you can obtain a list
of the available backups:

Now, restore the backup, using backup name instead of the backup-name parameter:

$ kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-backup-pbmctl --restart=Never -- \
 run backup \
 --server-address=<cluster-name>-backup-coordinator:10001 \
 --storage <storage> \
 --compression-algorithm=gzip \
 --description=my-backup

$ kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-backup-pbmctl --restart=Never -- list
backups --server-address=<cluster-name>-backup-coordinator:10001

$ kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-backup-pbmctl --restart=Never -- \
 run restore \
 --server-address=<cluster-name>-backup-coordinator:10001 \
 --storage <storage> \
 backup-name

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

10.5 How to use backups to move the external database to Kubernetes
The Operator allows restoring a backup not only on the Kubernetes cluster where it was made, but also on any Kubernetes-based environment with the installed
Operator, and the backup/restore tool actually used by the Operator is the Percona Backup for MongoDB . That makes it possible to move external MongoDB
Cluster to Kubernetes with Percona Backup for MongoDB.

There are other scenarios for migrating MongoDB database to Kubernetes as well. For example, this blogpost covers migration based on the regular MongoDB replication
capabilities.

Backups can be stored either locally, or remotely (on Amazon S3 or S3-compatible storage , or on Azure Blob Storage). S3-compatible storage to be used
for backups.

1. Make sure the following prerequisite requirements are satisDed within your setup:

Percona Backup for MongoDB packages are installed on the replica set nodes of the source cluster following the o`cial installation instructions , and
the authentication of the pbm-agent is conDgured to allow it accessing your database.

The Operator and the destination cluster should be installed in the Kuberentes-based environment. For simplicity, it’s reasonable to have the same
topology of the source and destination clusters, although Percona Backup for MongoDB allows replset-remapping as well.

2. ConDgure the cloud storage for backups on your source cluster following the o`cial guide . For example, using the Amazon S3 storage can be conDgured
with the following YAML Dle:

After putting all needed details into the Dle (AWS_ACCESS_KEY_ID , AWS_SECRET_ACCESS_KEY , the S3 bucket and region in the above example), provide the
conDg Dle to the pbm-agent on all nodes as follows:

3. Start the pbm-agent:

4. Now you can make backup as follows:

The command output will contain the backup name, which you will further use to restore the backup:

5. The rest of operations will be carried out on your destination cluster in a Kubernetes-based environment of your choice. These actions are described in the
How to restore backup to a new Kubernetes-based environment guide. Just use the proper name of the backup (2022-06-15T08:18:44Z) in the above
example, and proper parameters speciDc to your cloud storage (e.g. the pbm-test-bucket bucket name we used above).

Note

pbm_con6g.yaml

type: s3
s3:
 region: us-west-2
 bucket: pbm-test-bucket
 credentials:
 access-key-id: <your-access-key-id-here>
 secret-access-key: <your-secret-key-here>

$ pbm config --file pbm_config.yaml

$ sudo systemctl start pbm-agent

$ pbm backup --wait

Starting backup '2022-06-15T08:18:44Z'....
Waiting for '2022-06-15T08:18:44Z' backup.......... done

pbm-conf> pbm status -s backups

Backups:
========
FS /data/pbm
 Snapshots:
 2022-06-15T08:18:44Z 28.23KB <logical> [complete: 2022-06-15T08:18:49Z]

https://github.com/percona/percona-backup-mongodb
https://www.percona.com/blog/migrating-mongodb-to-kubernetes
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://azure.microsoft.com/en-us/services/storage/blobs/
https://docs.percona.com/percona-backup-mongodb/installation.html
https://docs.percona.com/percona-backup-mongodb/initial-setup.html#configure-authentication-in-mongodb
https://www.percona.com/blog/moving-mongodb-cluster-to-a-different-environment-with-percona-backup-for-mongodb/
https://docs.percona.com/percona-backup-mongodb/initial-setup.html#configure-remote-backup-storage

10.6 Install Percona Operator for MongoDB in multi-namespace
(cluster-wide) mode

Difference between single-namespace and multi-namespace Operator deployment
By default, Percona Operator for MongoDB functions in a speciDc Kubernetes namespace. You can create one during installation (like it is shown in the
installation instructions) or just use the default namespace. This approach allows several Operators to co-exist in one Kubernetes-based environment, being
separated in different namespaces:

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Kubernetes API

OperatorOperator

DB Pod 1 DB Pod N

CSI

Storage
Area

Network

Percona Server for MongoDB
Namespace (psmdbN)

Percona Server for MongoDB
Namespace (psmdb1)

Still, sometimes it is more convenient to have one Operator watching for Percona Server for MongoDB Custom Resources in several namespaces.

We recommend running Percona Operator for MongoDB in a traditional way, limited to a speciDc namespace. But it is possible to run it in so-called cluster-wide
mode, one Operator watching several namespaces, if needed:

Kubernetes API

Percona Operator for MongoDB

DB Pod 1 DB Pod 2

CSI

Storage
Area

Network

api

DB Pod DB Pod

Operator Namespace (psmdb-operator)

Percona Server for MongoDB
Namespace (psmdb1)

Namespace
psmdb2

Namespace
psmdbN

Please take into account that if several Operators are conDgured to watch the same namespace, it is entirely unpredictable which one will get ownership of the Custom Resource in it,
so this situation should be avoided.

Installing the Operator in cluster-wide mode
To use the Operator in such cluster-wide mode, you should install it with a different set of conDguration YAML Dles, which are available in the deploy folder and
have Dlenames with a special cw- preDx: e.g. deploy/cw-bundle.yaml .

While using this cluster-wide versions of conDguration Dles, you should set the following information there:

subjects.namespace option should contain the namespace which will host the Operator,

WATCH_NAMESPACE key-value pair in the env section should have value equal to a comma-separated list of the namespaces to be watched by the Operator,
and the namespace in which the Operator resides (or just a blank string to make the Operator deal with all namespaces in a Kubernetes cluster).

The following simple example shows how to install Operator cluster-wide on Kubernetes.

1. First of all, clone the percona-server-mongodb-operator repository:

2. Let’s suppose that Operator’s namespace should be the psmdb-operator one. Create it as follows:

Note

$ git clone -b v1.21.1 https://github.com/percona/percona-server-mongodb-operator
$ cd percona-server-mongodb-operator

$ kubectl create namespace psmdb-operator

Namespaces to be watched by the Operator should be created in the same way if not exist. Let’s say the Operator should watch the psmdb namespace:

3. Edit the deploy/cw-bundle.yaml conDguration Dle to set proper namespaces:

4. Apply the deploy/cw-bundle.yaml Dle with the following command:

5. After the Operator is started, Percona Server for MongoDB can be created at any time by applying the deploy/cr.yaml conDguration Dle, like in the case of
normal installation:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can check it by quering the
PerconaServerMongoDB Custom Resource (it has handy psmdb shortname also) with the following command:

Verifying the cluster operation
It may take ten minutes to get the cluster started. When kubectl get psmdb command Dnally shows you the cluster status as ready , you can try to connect to
the cluster.

1. You will need the login and password for the admin user to access the cluster. Use kubectl get secrets command to see the list of Secrets objects (by
default the Secrets object you are interested in has my-cluster-name-secrets name). Then kubectl get secret my-cluster-name-secrets -o
yaml command will return the YAML Dle with generated Secrets, including the MONGODB_DATABASE_ADMIN and MONGODB_DATABASE_ADMIN_PASSWORD
strings, which should look as follows:

Here the actual login name and password are base64-encoded. Use echo 'aDAzQ0pCY3NSWEZ2ZUIzS1I=' | base64 --decode command to bring it back
to a human-readable form.

2. Run a container with a MongoDB client and connect its console output to your terminal. The following command will do this, naming the new Pod percona-
client :

Executing it may require some time to deploy the correspondent Pod.

$ kubectl create namespace psmdb

...
subjects:
- kind: ServiceAccount
 name: percona-server-mongodb-operator
 namespace: "psmdb-operator"
...
env:
 - name: WATCH_NAMESPACE
 value: "psmdb"
...

$ kubectl apply -f deploy/cw-bundle.yaml --server-side -n psmdb-operator

$ kubectl apply -f deploy/cr.yaml -n psmdb

$ kubectl get psmdb -n psmdb

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.psmdb.svc.cluster.local ready 5m26s

...
data:
 ...
 MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
 MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:6.0.25-20 --restart=Never --
env="POD_NAMESPACE=psmdb" -- bash -il

https://kubernetes.io/docs/reference/using-api/server-side-apply/

3. Now run mongo tool in the percona-client command shell using the login (which is normally databaseAdmin) and a proper password obtained from the
Secret. The command will look different depending on whether sharding is on (the default behavior) or off:

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.psmdb.svc.cluster.local/admin?ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.psmdb.svc.cluster.local/admin?
replicaSet=rs0&ssl=false"

10.7 Configure concurrency for a cluster reconciliation
Reconciliation is the process by which the Operator continuously compares the desired state with the actual state of the cluster. The desired state is deDned in a
Kubernetes custom resource, like PerconaServerMongoDB.

If the actual state does not match the desired state, the Operator takes actions to bring the system into alignment. This means creating, updating, or deleting
Kubernetes resources (Pods, Services, ConDgMaps, etc.) or performing database-speciDc operations like scaling, backups, or failover.

Reconciliation is triggered by a variety of events, including:

Changes to the cluster conDguration

Changes to the cluster state

Changes to the cluster resources

By default, the Operator has one reconciliation worker. This means that if you deploy or update 2 clusters at the same time, the Operator will reconcile them
sequentially.

The MAX_CONCURRENT_RECONCILES environment variable in the percona-server-mongodb-operator deployment controls the number of concurrent workers
that can reconcile resources in Percona Server for MongoDB clusters in parallel.

Thus, to extend the previous example, if you set the number of reconciliation workers to 2 , the Operator will reconcile both clusters in parallel. This also helps
you with benchmarking the Operator performance.

The general recommendation is to set the number of concurrent workers equal to the number of Percona Server for MongoDB clusters. When the number of
workers is greater, the excessive workers will remain idle.

Set the number of reconciliation workers

1. Check the index of the MAX_CONCURRENT_RECONCILES environment variable using the following command:

2. To set a new value and verify it’s been updated, run the following command:

The command does the following:

$ kubectl get deployment percona-server-mongodb-operator -o jsonpath='{.spec.template.spec.containers[0].env[?
(@.name=="MAX_CONCURRENT_RECONCILES")].value}'

Sample output

1

$ kubectl patch deployment percona-server-mongodb-operator \
--type='strategic' \
-o yaml \
-p='{
 "spec": {
 "template": {
 "spec": {
 "containers": [
 {
 "name": "percona-server-mongodb-operator",
 "env": [
 {
 "name": "MAX_CONCURRENT_RECONCILES",
 "value": "2"
 }
]
 }
]
 }
 }
 }
}'\
-o jsonpath='{.spec.template.spec.containers[0].env[?(@.name=="MAX_CONCURRENT_RECONCILES")].value}'

Patches the deployment to update the MAX_CONCURRENT_RECONCILES environment variable

Sets the value to 2 .

Outputs the result

You can set the value to any number greater than 0.

Sample output

2

10.8 Monitor Kubernetes
Monitoring the state of the database is crucial to timely identify and react to performance issues. Percona Monitoring and Management (PMM) solution enables
you to do just that.

However, the database state also depends on the state of the Kubernetes cluster itself. Hence it’s important to have metrics that can depict the state of the
Kubernetes cluster.

This document describes how to set up monitoring of the Kubernetes cluster health. This setup has been tested with the PMM server as the centralized data
storage and the Victoria Metrics Kubernetes monitoring stack as the metrics collector. These steps may also apply if you use another Prometheus-compatible
storage.

Pre-requisites
To set up monitoring of Kubernetes, you need the following:

1. PMM Server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an AWS instance. Please refer to the o`cial PMM
documentation for the installation instructions.

2. Helm v3 .

3. kubectl .

4. The PMM Server API key. The key must have the role “Admin”.

Get the PMM API key:

Install the Victoria Metrics Kubernetes monitoring stack

Quick install

1. To install the Victoria Metrics Kubernetes monitoring stack with the default parameters, use the quick install command. Replace the following placeholders
with your values:

API-KEY - The API key of your PMM Server

PMM-SERVER-URL - The URL to access the PMM Server

UNIQUE-K8s-CLUSTER-IDENTIFIER - IdentiDer for the Kubernetes cluster. It can be the name you deDned during the cluster creation.

You should use a unique identiDer for each Kubernetes cluster. The use of the same identifer for more than one Kubernetes cluster will result in the
con_icts during the metrics collection.

NAMESPACE - The namespace where the Victoria metrics Kubernetes stack will be installed. If you haven’t created the namespace before, it will be created
during the command execution.

We recommend to use a separate namespace like monitoring-system .

 From PMM UI

Generate the PMM API key

 From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace <login>:<password>@<server_host> placeholders with
your real PMM Server login, password, and hostname in the following command:

The API key is not rotated.

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d {"name":"operator", "role": "Admin"}'
"https://<login>:<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
http://localhost:8001/percona-operator-for-mongodb/print_page.html#monitor-kubernetes-get-the-pmm-server-api-key
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

The Prometheus node exporter is not installed by default since it requires privileged containers with the access to the host Dle system. If you need the metrics for Nodes, add the
--node-exporter-enabled _ag as follows:

Install manually

You may need to customize the default parameters of the Victoria metrics Kubernetes stack.

Since we use the PMM Server for monitoring, there is no need to store the data in Victoria Metrics Operator. Therefore, the Victoria Metrics Helm chart is
installed with the vmsingle.enabled and vmcluster.enabled parameters set to false in this setup.

Check all the role-based access control (RBAC) rules of the victoria-metrics-k8s-stack chart and the dependencies chart, and modify them based on
your requirements.

Configure authentication in PMM

To access the PMM Server resources and perform actions on the server, conDgure authentication.

1. Encode the PMM Server API key with base64.

2. Create the Namespace where you want to set up monitoring. The following command creates the Namespace monitoring-system . You can specify a
different name. In the latter steps, specify your namespace instead of the <namespace> placeholder.

3. Create the YAML Dle for the Kubernetes Secrets and specify the base64-encoded API key value within. Let’s name this Dle pmm-api-vmoperator.yaml .

4. Create the Secrets object using the YAML Dle you created previously. Replace the <filename> placeholder with your value.

5. Check that the secret is created. The following command checks the secret for the resource named pmm-token-vmoperator (as deDned in the
metadata.name option in the secrets Dle). If you deDned another resource name, specify your value.

Create a ConfigMap to mount for kube-state-metrics

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/quick-
install.sh | bash -s -- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-CLUSTER-
IDENTIFIER> --namespace <NAMESPACE>

Note

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/quick-install.sh | bash -s
-- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-CLUSTER-IDENTIFIER> --namespace <NAMESPACE> --node-
exporter-enabled

 Linux

 macOS

$ echo -n <API-key> | base64 --wrap=0

$ echo -n <API-key> | base64

$ kubectl create namespace monitoring-system

pmm-api-vmoperator.yaml

apiVersion: v1
data:
 api_key: <base-64-encoded-API-key>
kind: Secret
metadata:
 name: pmm-token-vmoperator
 #namespace: default
type: Opaque

$ kubectl apply -f pmm-api-vmoperator.yaml -n <namespace>

$ kubectl get secret pmm-token-vmoperator -n <namespace>

https://helm.sh/docs/topics/rbac/
https://kubernetes.io/docs/concepts/configuration/secret/

The kube-state-metrics (KSM) is a simple service that listens to the Kubernetes API server and generates metrics about the state of various objects -
Pods, Deployments, Services and Custom Resources.

To deDne what metrics the kube-state-metrics should capture, create the ConDgMap and mount it to a container.

Use the example configmap.yaml conDguration Dle to create the ConDgMap.

As a result, you have the customresource-config-ksm ConDgMap created.

Install the Victoria Metrics Kubernetes monitoring stack

1. Add the dependency repositories of victoria-metrics-k8s-stack chart.

2. Add the Victoria Metrics Kubernetes monitoring stack repository.

3. Update the repositories.

4. Install the Victoria Metrics Kubernetes monitoring stack Helm chart. You need to specify the following conDguration:

the URL to access the PMM server in the externalVM.write.url option in the format <PMM-SERVER-URL>/victoriametrics/api/v1/write . The URL
can contain either the IP address or the hostname of the PMM server.

the unique name or an ID of the Kubernetes cluster in the vmagent.spec.externalLabels.k8s_cluster_id option. Ensure to set different values if you
are sending metrics from multiple Kubernetes clusters to the same PMM Server.

the <namespace> placeholder with your value. The Namespace must be the same as the Namespace for the Secret and ConDgMap.

To illustrate, say your PMM Server URL is https://pmm-example.com , the cluster ID is test-cluster and the Namespace is monitoring-system . Then
the command would look like this:

Validate the successful installation

What Pods are running depends on the conDguration chosen in values used while installing victoria-metrics-k8s-stack chart.

$ kubectl apply -f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-
configmap.yaml -n <namespace>

$ helm repo add grafana https://grafana.github.io/helm-charts
$ helm repo add prometheus-community https://prometheus-community.github.io/helm-charts

$ helm repo add vm https://victoriametrics.github.io/helm-charts/

$ helm repo update

$ helm install vm-k8s vm/victoria-metrics-k8s-stack \
-f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/values.yaml \
--set externalVM.write.url=<PMM-SERVER-URL>/victoriametrics/api/v1/write \
--set vmagent.spec.externalLabels.k8s_cluster_id=<UNIQUE-CLUSTER-IDENTIFER/NAME> \
-n <namespace>

$ helm install vm-k8s vm/victoria-metrics-k8s-stack \
-f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/values.yaml \
--set externalVM.write.url=https://pmm-example.com/victoriametrics/api/v1/write \
--set vmagent.spec.externalLabels.k8s_cluster_id=test-cluster \
-n monitoring-system

$ kubectl get pods -n <namespace>

Sample output

vm-k8s-stack-kube-state-metrics-d9d85978d-9pzbs 1/1 Running 0 28m
vm-k8s-stack-victoria-metrics-operator-844d558455-gvg4n 1/1 Running 0 28m
vmagent-vm-k8s-stack-victoria-metrics-k8s-stack-55fd8fc4fbcxwhx 2/2 Running 0 28m

https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/Percona-Lab/k8s-monitoring/blob/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack

Verify metrics capture
1. Connect to the PMM server.

2. Click Explore and switch to the Code mode.

3. Check that the required metrics are captured, type the following in the Metrics browser dropdown:

cadvisor :

kubelet:

kube-state-metrics metrics that also include Custom resource metrics for the Operator and database deployed in your Kubernetes cluster:

https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/kubernetes/kube-state-metrics/tree/main/docs

Uninstall Victoria metrics Kubernetes stack
To remove Victoria metrics Kubernetes stack used for Kubernetes cluster monitoring, use the cleanup script. By default, the script removes all the Custom
Resource DeDnitions(CRD) and Secrets associated with the Victoria metrics Kubernetes stack. To keep the CRDs, run the script with the --keep-crd _ag.

Check that the Victoria metrics Kubernetes stack is deleted:

The output should provide the empty list.

If you face any issues with the removal, uninstall the stack manually:

 Remove CRDs

Replace the <NAMESPACE> placeholder with the namespace you speciDed during the Victoria metrics Kubernetes stack installation:

 Keep CRDs

Replace the <NAMESPACE> placeholder with the namespace you speciDed during the Victoria metrics Kubernetes stack installation:

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-
stack/cleanup.sh) --namespace <NAMESPACE>

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-
stack/cleanup.sh) --namespace <NAMESPACE> --keep-crd

$ helm list -n <namespace>

$ helm uninstall vm-k8s-stack -n < namespace>

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/

10.9 Retrieve Percona certified images
When preparing for the upgrade, you must have the list of compatible images for a speciDc Operator version and the database version you wish to update to. You
can either manually Dnd the images in the list of certiDed images or you can get this list by querying the Version Service server.

What is the Version Service?

The Version Service is a centralized repository that the Percona Operator for MySQL connects to at scheduled times to get the latest information on compatible
versions and valid image paths. This service is a crucial part of the automatic upgrade process, and it is enabled by default. Its landing page,
check.percona.com , provides more details about the service itself.

How to query the Version Service

You can manually query the Version Service using the curl command. The basic syntax is:

where:

<operator-version> is the version of the Percona Operator for MongoDB you are using.

<psmdb-version> is the version of Percona Server for MongoDB you want to get images for. This part is optional and helps Dlter the results. It can be a
speciDc Percona Server for MongoDB version (e.g. 8.0.8-3), a recommended version (e.g. 7.0-recommended), or the latest available version (e.g. 8.0-latest).

For example, to retrieve the list of images for the Operator version 1.20.0 and the latest version of Percona Server for MongoDB 8.0, use the following
command:

To narrow down the search and check the Percona Server for MySQL images available for a speciDc Operator version (1.20.1 in the following example), use the
following command:

$ curl https://check.percona.com/versions/v1/psmdb-operator/<operator-version>/<psmdb-version> | jq -r '.versions[].matrix'

$ curl https://check.percona.com/versions/v1/psmdb-operator/1.20.0/8.0-latest |jq -r '.versions[].matrix'

Sample output

{
"mongod": {
 "8.0.8-3": {
 "imagePath": "percona/percona-server-mongodb:8.0.8-3",
 "imageHash": "e4580ca292f07fd7800e139121aea4b2c1dfa6aa34f3657d25a861883fd3de41",
 "imageHashArm64": "96cfee2102499aba05e63ca7862102c2b1da1cf9f4eea0cbea3793a07c183925",
 "status": "available",
 "critical": false
 }
},
"pmm": {
 "2.44.1": {
 "imagePath": "percona/pmm-client:2.44.1",
 "imageHash": "8b2eaddffd626f02a2d5318ffebc0c277fe8457da6083b8cfcada9b6e6168616",
 "imageHashArm64": "337fecd4afdb3f6daf2caa2b341b9fe41d0418a0e4ec76980c7f29be9d08b5ea",
 "status": "recommended",
 "critical": false
 }
},
"backup": {
 "2.9.1": {
 "imagePath": "percona/percona-backup-mongodb:2.9.1",
 "imageHash": "976bfbaa548eb70dd90bf0bd2dcfe40b2994d749ef644af3a0590f4856e4d7e2",
 "imageHashArm64": "ebc6e5c5aa3ed97991d3fd90e9201597b485ddc0eae8d7ee4311ecb785c03bf0",
 "status": "recommended",
 "critical": false
 }
},
"operator": {
 "1.20.0": {
 "imagePath": "percona/percona-server-mongodb-operator:1.20.0",
 "imageHash": "01da3139b0f7f64a27f3642ca06581ea065a02891b13ce2375d61471011d6dd4",
 "imageHashArm64": "26d885398af42d18928f51f070aff770df900eb5ddf46e3e0bc2570720089bb1",
 "status": "recommended",
 "critical": false
 }
},

$ curl -s https://check.percona.com/versions/v1/psmdb-operator/1.20.1 | jq -r '.versions[0].matrix.mongod | to_entries[] | "\
(.key)\t\(.value.imagePath)\t\(.value.status)"'

Sample output

6.0.15-12 percona/percona-server-mongodb:6.0.15-12 available
6.0.16-13 percona/percona-server-mongodb:6.0.16-13 available
6.0.18-15 percona/percona-server-mongodb:6.0.18-15-multi available
6.0.19-16 percona/percona-server-mongodb:6.0.19-16-multi available
6.0.21-18 percona/percona-server-mongodb:6.0.21-18 recommended
7.0.12-7 percona/percona-server-mongodb:7.0.12-7 available
7.0.14-8 percona/percona-server-mongodb:7.0.14-8-multi available
7.0.15-9 percona/percona-server-mongodb:7.0.15-9-multi available
7.0.18-11 percona/percona-server-mongodb:7.0.18-11 recommended
8.0.4-1 percona/percona-server-mongodb:8.0.4-1-multi available
8.0.8-3 percona/percona-server-mongodb:8.0.8-3 available

10.10 Delete Percona Operator for MongoDB
You may have different reasons to clean up your Kubernetes environment: moving from trial deployment to a production one, testing experimental conDgurations
and the like. In either case, you need to remove some (or all) of these objects:

Percona Distribution for MongoDB cluster managed by the Operator

Percona Operator for MongoDB itself

Custom Resource DeDnitions deployed with the Operator

Resources like PVCs and Secrets

Delete the database cluster
To delete the database cluster means to delete the Custom Resource associated with it.

There are two Dnalizers deDned in the Custom Resource, which are related to cluster deletion:

percona.com/delete-psmdb-pods-in-order : if present, ensures the proper Pods deletion order at cluster deletion (on by default).

percona.com/delete-psmdb-pvc : if present, Persistent Volume Claims for the database cluster Pods are deleted along with the cluster deletion.

Second one is off by default in the deploy/cr.yaml conDguration Dle, allowing you to recreate the cluster without losing data. Also, you can delete TLS-related objects and PVCs
manually, if needed.

The steps are the following:

Delete the Operator
Choose the instructions relevant to the way you installed the Operator.

Use kubectl

To uninstall the Operator, delete the Deployments related to it.

Note

List the Custom Resources. Replace the <namespace> placeholder with your value1

$ kubectl get psmdb -n <namespace>

Delete the Custom Resource with the name of your cluster

It may take a while to stop and delete the cluster.

2

$ kubectl delete psmdb <cluster_name> -n <namespace>

Sample output

perconaservermongodb.psmdb.percona.com "my-cluster-name" deleted

Check that the cluster is deleted by listing the Custom Resources again:3

$ kubectl get psmdb -n <namespace>

Sample output

No resources found in <namespace> namespace.

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Use Helm

To delete the Operator, do the following:

List the deployments. Replace the <namespace> placeholder with your namespace.1

$ kubectl get deploy -n <namespace>

Delete the percona-* deployment2

$ kubectl delete deploy percona-server-mongodb-operator -n <namespace>

Check that the Operator is deleted by listing the Pods. As a result you should have no Pods related to it.3

$ kubectl get pods -n <namespace>

Sample output

No resources found in <namespace> namespace.

If you are not just deleting the Operator and MongoDB cluster from a speciDc namespace, but want to clean up your entire Kubernetes environment, you can
also delete the CustomRecourceDeDnitions (CRDs) .

 Warning: CRDs in Kubernetes are non-namespaced but are available to the whole environment. This means that you shouldn’t delete CRDs if you still

have the Operator and database cluster in some namespace.

Get the list of CRDs.

4

$ kubectl get crd

Delete the percona*.psmdb.percona.com CRDs5

$ kubectl delete crd perconaservermongodbbackups.psmdb.percona.com perconaservermongodbrestores.psmdb.percona.com
perconaservermongodbs.psmdb.percona.com

Sample output

customresourcedefinition.apiextensions.k8s.io "perconaservermongodbbackups.psmdb.percona.com" deleted
customresourcedefinition.apiextensions.k8s.io "perconaservermongodbrestores.psmdb.percona.com" deleted
customresourcedefinition.apiextensions.k8s.io "perconaservermongodbs.psmdb.percona.com" deleted

List the Helm charts:1

$ helm list -n <namespace>

Sample output

cluster1 <namespace> 1 2023-10-31 10:18:10.763049 +0100 CET deployed psmdb-db-1.14.4 1.21.1
my-op <namespace> 1 2023-10-31 10:15:18.41444 +0100 CET deployed psmdb-operator-1.14.3 1.21.1

Delete the release object for Percona Server for MongoDB2

$ helm uninstall cluster1 --namespace <namespace>

Delete the release object for the Operator3

$ helm uninstall my-op --namespace <namespace>

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts

Clean up resources
By default, TLS-related objects and data volumes remain in Kubernetes environment after you delete the cluster to allow you to recreate it without losing the
data. If you wish to delete them, do the following:

Delete Persistent Volume Claims.

Note that if your Custom Resource manifest includes the percona.com/delete-psmdb-pvc Dnalizer, all Secrets will be automatically deleted when you
delete the PVCs. To prevent this from happening, disable the Dnalizer.

1

List PVCs. Replace the <namespace> placeholder with your namespace:1

$ kubectl get pvc -n <namespace>

Sample output

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mongod-data-my-cluster-name-cfg-0 Bound pvc-245641fe-b172-439b-8c9c-cba5ea4ccd80 3Gi RWO standard-rwo 10m
mongod-data-my-cluster-name-cfg-1 Bound pvc-4ff7c3c4-b91c-4938-a52e-591fd559f4a4 3Gi RWO standard-rwo 9m19s
mongod-data-my-cluster-name-cfg-2 Bound pvc-acbff4a3-784a-48e7-ad4b-8b00239982d3 3Gi RWO standard-rwo 8m36s
mongod-data-my-cluster-name-rs0-0 Bound pvc-0a56e9ab-e22b-47ce-95de-a55f2676456a 3Gi RWO standard-rwo 10m
mongod-data-my-cluster-name-rs0-1 Bound pvc-cd075679-a7f5-4182-a8ce-341db1fb12d3 3Gi RWO standard-rwo 9m19s
mongod-data-my-cluster-name-rs0-2 Bound pvc-9ff0d41d-c739-494d-a45c-576f3a1fb590 3Gi RWO standard-rwo 8m26s

Delete PVCs related to your cluster. The following command deletes PVCs for the my-cluster-name cluster:2

$ kubectl delete pvc mongod-data-my-cluster-name-cfg-0 mongod-data-my-cluster-name-cfg-1 mongod-data-my-cluster-name-
cfg-2 mongod-data-my-cluster-name-rs0-0 mongod-data-my-cluster-name-rs0-1 mongod-data-my-cluster-name-rs0-2 -n
<namespace>

Sample output

persistentvolumeclaim "mongod-data-my-cluster-name-cfg-0" deleted persistentvolumeclaim "mongod-data-my-cluster-name-cfg-1" deleted
persistentvolumeclaim "mongod-data-my-cluster-name-cfg-2" deleted
persistentvolumeclaim "mongod-data-my-cluster-name-rs0-0" deleted
persistentvolumeclaim "mongod-data-my-cluster-name-rs0-1" deleted
persistentvolumeclaim "mongod-data-my-cluster-name-rs0-2" deleted

Delete the Secrets2

List Secrets:1

$ kubectl get secrets -n <namespace>

Delete the Secret:2

$ kubectl delete secret <secret_name> -n <namespace>

11 Reference

11.1 Custom Resource options
A Custom Resource (CR) is how you conDgure the Operator to manage Percona Server for MongoDB. It deDnes a custom resource of type
PerconaServerMongoDB .

To customize it, edit the spec section in the deploy/cr.yaml .

This document explains every section of the deploy/cr.yaml Custom Resource manifest and describes available options.

apiVersion

SpeciDes the API version of the Custom Resource. psmdb.percona.com indicates the group, and v1 is the version of the API.

This tells Kubernetes which version of the custom resource deDnition (CRD) to use.

kind

DeDnes the type of resource being created.

metadata

The metadata part of the deploy/cr.yaml contains metadata about the resource, such as its name and other attributes. It includes the following keys:

name sets the name of your Percona Server for MongoDB Cluster. The name must follow these rules:

include only URL-compatible characters ,

not exceed 22 characters,

start and end with an alphanumeric character

The default name is my-cluster-name .

finalizers ensure safe deletion of resources in Kubernetes under certain conditions. This subsection includes the following Dnalizers:

percona.com/delete-psmdb-pods-in-order if present, activates the Finalizer which controls the proper Pods deletion order in case of the cluster
deletion event (on by default)

percona.com/delete-psmdb-pvc if present, activates the Finalizer which deletes appropriate Persistent Volume Claims after the cluster deletion
event (off by default). It also deletes Secrets.

percona.com/delete-pitr-chunks if present, activates the Finalizer which deletes all point-in-time recovery chunks from the cloud storage on cluster
deletion (off by default)

Toplevel spec elements
The spec part of the deploy/cr.yaml Dle contains the following keys and sections:

platform

Override/set the Kubernetes platform: kubernetes or openshift .

Value type Example

 string kubernetes

pause

Pause/resume: setting it to true gracefully stops the cluster, and setting it to false after shut down starts the cluster back.

Value type Example

 boolean false

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

unmanaged

Setting it to true instructs the Operator to run the cluster in unmanaged state - the Operator does not form replica sets, and does not generate TLS certiDcates
or user credentials. This can be useful for migration scenarios and for cross-site replication.

Value type Example

 boolean false

enableVolumeExpansion

Enables or disables storage scaling / volume expansion with Volume Expansion capability.

Value type Example

 boolean false

enableExternalVolumeAutoscaling

Enables or disables the use of external volume autoscaler. When disabled, the Operator uses its own expansion logic with Volume Expansion capability. Read
more about it in Storage resizing with Volume Expansion capability

Value type Example

 boolean false

crVersion

Version of the Operator the Custom Resource belongs to.

Value type Example

 string 1.21.1

image

The Docker image of Percona Server for MongoDB to deploy (actual image names can be found in the list of certiDed images).

Value type Example

 string percona/percona - server - mongodb:6.0.25-20

imagePullPolicy

The policy used to update images .

Value type Example

 string Always

imagePullSecrets.name

The Kubernetes ImagePullSecret to access the custom registry.

Value type Example

 string private - registry - credentials

https://www.percona.com/doc/percona-server-for-mongodb/LATEST/index.html
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

initImage

An alternative image for the initial Operator installation.

Value type Example

 string percona/percona-server-mongodb-operator:1.21.1

initContainerSecurityContext

A custom Kubernetes Security Context for a Container for the initImage (image, which can be used instead of the default one while the initial Operator
installation).

Value type Example

 subdoc {}

ClusterServiceDNSSuffix

The (non-standard) cluster domain to be used as a su`x of the Service name.

Value type Example

 string svc.cluster.local

clusterServiceDNSMode

Can be internal (local fully-qualiDed domain names will be used in replset conDguration even if the replset is exposed - the default value), external (exposed
MongoDB instances will use ClusterIP addresses, should be applied with caution) or ServiceMesh (use a special FQDN based on the Pod name). Being set,
ServiceMesh value suprecedes multiCluster settings, and therefore these two modes cannot be combined together.

Value type Example

 string Internal

allowUnsafeConfigurations

Prevents users from conDguring a cluster with unsafe parameters: starting it with less than 3 replica set instances, with an even number of replica set instances
without additional arbiter, or without TLS/SSL certiDcates, or running a sharded cluster with less than 3 conDg server Pods or less than 2 mongos Pods (if
false , the Operator will automatically change unsafe parameters to safe defaults). After switching to unsafe conFgurations permissive mode you will not be able
to switch the cluster back by setting spec.allowUnsafeConfigurations key to false , the Rag will be ignored. This option is deprecated and will be removed in
future releases. Use unsafeFlags subsection instead

Value type Example

 boolean false

updateStrategy

A strategy the Operator uses for upgrades. Possible values are SmartUpdate, RollingUpdate and OnDelete .

Value type Example

 string SmartUpdate

ignoreAnnotations

The list of annotations to be ignored by the Operator.

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
http://localhost:8001/percona-operator-for-mongodb/print_page.html#expose-servicemesh
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#rolling-updates
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#on-delete

Value type Example

 subdoc service.beta.kubernetes.io/aws-load-balancer-backend-protocol

ignoreLabels

The list of labels to be ignored by the Operator.

Value type Example

 subdoc rack

multiCluster.enabled

Multi-cluster Services (MCS): setting it to true enables MCS cluster mode .

Value type Example

 boolean false

multiCluster.DNSSuffix

The cluster domain to be used as a su`x for multi-cluster Services used by Kubernetes (svc.clusterset.local by default).

Value type Example

 string svc.clusterset.local

Unsafe flags section
The unsafeFlags section in the deploy/cr.yaml Dle contains various conDguration options to prevent users from conDguring a cluster with unsafe
parameters.

Once you enable permissive mode with unsafe settings, you cannot disable it by simply turning the same settings back (e.g. by setting a conFguration option to
false). These settings will be ignored if you try to revert them. Reverting the cluster to a secure state may require additional steps or reinitialization.

unsafeFlags.tls

Prevents users from conDguring a cluster without TLS/SSL certiDcates (if false , the Operator will automatically change unsafe parameters to safe defaults).

Value type Example

 boolean false

unsafeFlags.replsetSize

Prevents users from conDguring a cluster with unsafe parameters: starting it with less than 3 replica set instances or with an even number of replica set
instances without additional arbiter (if false , the Operator will automatically change unsafe parameters to safe defaults).

Value type Example

 boolean false

unsafeFlags.mongosSize

Prevents users from conDguring a sharded cluster with less than 3 conDg server Pods or less than 2 mongos Pods (if false , the Operator will automatically
change unsafe parameters to safe defaults).

https://cloud.google.com/kubernetes-engine/docs/concepts/multi-cluster-services
https://cloud.google.com/kubernetes-engine/docs/how-to/multi-cluster-services
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

Value type Example

 boolean false

unsafeFlags.terminationGracePeriod

Prevents users from conDguring a sharded cluster without termination grace period for replica set, conDg servers and mongos Pods.

Value type Example

 boolean false

unsafeFlags.backupIfUnhealthy

Prevents running backup on a cluster with failed health checks .

Value type Example

 boolean false

TLS (extended cert-manager configuration section)

The tls section in the deploy/cr.yaml Dle contains various conDguration options for additional customization of the Transport Layer Security.

tls.mode

Controls if the TLS encryption should be used and/or enforced. Can be disabled , allowTLS , preferTLS , or requireTLS . If set to disabled , it also requires
setting unsafeFlags.tls option to true`.

Value type Example

 string preferTLS

tls.certValidityDuration

The validity duration of the external certiDcate for cert manager (90 days by default). This value is used only at cluster creation time and can’t be changed for
existing clusters.

Value type Example

 string 2160h

tls.allowInvalidCertificates

If true , the mongo shell will not attempt to validate the server certiDcates. Should be true (default variant) to use self-signed certiScates generated by the
Operator when there is no cert-manager.

Value type Example

 boolean true

tls.issuerConf.name

A cert-manager issuer name .

Value type Example

 string special-selfsigned-issuer

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://cert-manager.io/docs/concepts/issuer/

tls.issuerConf.kind

A cert-manager issuer type .

tls.issuerConf.group

A cert-manager issuer group . Should be cert-manager.io for built-in cert-manager certiDcate issuers.

Value type Example

 string cert-manager.io

Upgrade Options Section
The upgradeOptions section in the deploy/cr.yaml Dle contains various conDguration options to control Percona Server for MongoDB upgrades.

upgradeOptions.versionServiceEndpoint

The Version Service URL used to check versions compatibility for upgrade.

Value type Example

 string https://check.percona.com

upgradeOptions.apply

SpeciDes how updates are processed by the Operator. Never or Disabled will completely disable automatic upgrades, otherwise it can be set to Latest or
Recommended or to a speciDc version stringof Percona Server for MongoDB (e.g. 6.0.25-20) that is wished to be version-locked (so that the user can
control the version running, but use automatic upgrades to move between them).

Value type Example

 string disabled

upgradeOptions.schedule

Scheduled time to check for updates, speciDed in the crontab format .

Value type Example

 string 0 2 * * *

upgradeOptions.setFCV

If enabled, FeatureCompatibilityVersion (FCV) will be set to match the version during major version upgrade.

Value type Example

 boolean false

Secrets section
Each spec in its turn may contain some key-value pairs. The secrets one has only two of them:

secrets.keyFile

The secret name for the MongoDB Internal Auth Key Dle . This secret is auto-created by the operator if it doesn’t exist.

https://cert-manager.io/docs/configuration/
https://cert-manager.io/docs/configuration/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://en.wikipedia.org/wiki/Cron
https://docs.mongodb.com/manual/reference/command/setFeatureCompatibilityVersion/
https://docs.mongodb.com/manual/core/security-internal-authentication/

Value type Example

 string my-cluster-name-mongodb-keyfile

secrets.users

The name of the Secrets object for the MongoDB users required to run the operator.

Value type Example

 string my-cluster-name-secrets

secrets.sse

The name of the Secrets object for server side encryption credentials

Value type Example

 string my-cluster-name-sse

secrets.ssl

A secret with TLS certiDcate generated for external communications. When generated by the Operator, the name defaults to <cluster-name>-ssl . See
Transport Layer Security (TLS) for details.

Value type Example

 string my-custom-ssl

secrets.sslInternal

A secret with TLS certiDcate generated for internal communications. When generated by the Operator, the name defaults to <cluster-name>-sslInternal .
See Transport Layer Security (TLS) for details.

Value type Example

 string my-custom-ssl-internal

secrets.encryptionKey

SpeciDes a secret object with the encryption key .

Value type Example

 string my-cluster-name-mongodb-encryption-key

secrets.vault

SpeciDes a secret object to provide integration with HashiCorp Vault.

Value type Example

 string my-cluster-name-vault

secrets.ldapSecret

SpeciDes a secret object for LDAP over TLS connection between MongoDB and OpenLDAP server.

https://docs.mongodb.com/manual/tutorial/configure-encryption/#local-key-management

Value type Example

 string my-ldap-secret

Replsets Section
The replsets section controls the MongoDB Replica Set.

replsets.name

The name of the MongoDB Replica Set .

Value type Example

 string rs 0

replsets.size

The size of the MongoDB Replica Set, must be >= 3 for High-Availability .

Value type Example

 int 3

replsets.terminationGracePeriodSeconds

The amount of seconds Kubernetes will wait for a clean replica set Pods termination.

Value type Example

 int 300

replsets.serviceAccountName

Name of the separate privileged service account for Replica Set Pods.

Value type Example

 string default

replsets.topologySpreadConstraints.labelSelector.matchLabels

The label selector for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 label app.kubernetes.io/name: percona-server-mongodb

replsets.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread Constraints .

Value type Example

 int 1

replsets.topologySpreadConstraints.topologyKey

https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/replication/#redundancy-and-data-availability
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string kubernetes.io/hostname

replsets.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string DoNotSchedule

replsets.replsetOverrides.MEMBER-NAME.host

Use if you need to override the replica set members FQDNs with custom host names. Each key (MEMBER-NAME) under replsetOverrides should be name of a
Pod. The Operator won’t perform any validation for hostnames, so it’s the user’s responsibility to ensure connectivity.

Value type Example

 string my-cluster-name-rs0-0.example.net:27017

replsets.replsetOverrides.MEMBER-NAME.priority

Use if you need to override the replica set members priorities .

Value type Example

 int 3

replsets.replsetOverrides.MEMBER-NAME.tags

Optional custom tags which can be added to the replset members to make their identication easier.

Value type Example

 label key: value-0

replsets.externalNodes.host

The URL or IP address of the external replica set instance.

Value type Example

 string 34.124.76.90

replsets.externalNodes.port

The port number of the external replset instance.

Value type Example

 string 27017

replsets.externalNodes.votes

The number of votes of the external replset instance.

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://www.mongodb.com/docs/manual/tutorial/adjust-replica-set-member-priority/
https://docs.mongodb.com/manual/reference/replica-configuration/#mongodb-rsconf-rsconf.members-n-.votes

Value type Example

 string 0

replsets.externalNodes.priority

The priority of the external replset instance.

Value type Example

 string 0

replsets.configuration

Custom conDguration options for mongod. Please refer to the o`cial manual for the full list of options, and speciDc Percona Server for MongoDB
docs .

Value type Example

 subdoc

replsets.affinity.antiAffinityTopologyKey

The Kubernetes topologyKey node a`nity constraint for the Replica Set nodes.

Value type Example

 string kubernetes.io/hostname

replsets.affinity.advanced

In cases where the pods require complex tuning the advanced option turns off the topologykey effect. This setting allows the standard Kubernetes a`nity
constraints of any complexity to be used.

Value type Example

 subdoc

replsets.tolerations.key

The Kubernetes Pod tolerations key for the Replica Set nodes.

Value type Example

 string node.alpha.kubernetes.io/unreachable

replsets.tolerations.operator

|
operationProfiling:
 mode: slowOp
systemLog:
 verbosity: 1
storage:
 engine: wiredTiger
 wiredTiger:
 engineConfig:
 directoryForIndexes: false
 journalCompressor: snappy
 collectionConfig:
 blockCompressor: snappy
 indexConfig:
 prefixCompression: true

https://docs.mongodb.com/manual/reference/replica-configuration/#mongodb-rsconf-rsconf.members-n-.priority
https://docs.mongodb.com/manual/reference/configuration-options/
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/rate-limit.html
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/inmemory.html
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/data_at_rest_encryption.html
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/log-redaction.html
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/audit-logging.html
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

The Kubernetes Pod tolerations operator for the Replica Set nodes.

Value type Example

 string Exists

replsets.tolerations.effect

The Kubernetes Pod tolerations effect for the Replica Set nodes.

Value type Example

 string NoExecute

replsets.tolerations.tolerationSeconds

The Kubernetes Pod tolerations time limit for the Replica Set nodes.

Value type Example

 int 6000

replsets.primaryPreferTagSelector.region

Ensures the MongoDB instance is selected as Primary based on speciDed region

Value type Example

 string us-west-2

replsets.primaryPreferTagSelector.zone

Ensures the MongoDB instance is selected as Primary based on speciDed zone

Value type Example

 string us-west-2c

replsets.priorityClassName

The Kuberentes Pod priority class for the Replica Set nodes.

Value type Example

 string high priority

replsets.annotations

The Kubernetes annotations metadata for the Replica Set nodes.

Value type Example

 string iam.amazonaws.com/role: role-arn

replsets.labels

The Kubernetes a`nity labels for the Replica Set nodes.

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

Value type Example

 label rack: rack-22

replsets.nodeSelector

The Kubernetes nodeSelector a`nity constraint for the Replica Set nodes.

Value type Example

 label disktype: ssd

replsets.storage.engine

Sets the storage.engine option https://docs.mongodb.com/manual/reference/conDguration-options/#storage.engine`_ for the Replica Set nodes.

Value type Example

 string wiredTiger

replsets.storage.wiredTiger.engineConfig.cacheSizeRatio

The ratio used to compute the storage.wiredTiger.engineConDg.cacheSizeGB option for the Replica Set nodes.

Value type Example

 _oat 0.5

replsets.storage.wiredTiger.engineConfig.directoryForIndexes

Sets the storage.wiredTiger.engineConDg.directoryForIndexes option for the Replica Set nodes.

Value type Example

 boolean false

replsets.storage.wiredTiger.engineConfig.journalCompressor

Sets the storage.wiredTiger.engineConDg.journalCompressor option for the Replica Set nodes.

Value type Example

 string snappy

replsets.storage.wiredTiger.collectionConfig.blockCompressor

Sets the storage.wiredTiger.collectionConDg.blockCompressor option for the Replica Set nodes.

Value type Example

 string snappy

replsets.storage.wiredTiger.indexConfig.prefixCompression

Sets the storage.wiredTiger.indexConDg.preDxCompression option for the Replica Set nodes.

Value type Example

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://docs.mongodb.com/manual/reference/configuration-options/#storage.engine
https://www.mongodb.com/docs/manual/reference/configuration-options/#mongodb-setting-storage.wiredTiger.engineConfig.cacheSizeGB
https://www.mongodb.com/docs/manual/reference/configuration-options/#mongodb-setting-storage.wiredTiger.engineConfig.directoryForIndexes
https://www.mongodb.com/docs/manual/reference/configuration-options/#mongodb-setting-storage.wiredTiger.engineConfig.journalCompressor
https://www.mongodb.com/docs/manual/reference/configuration-options/#mongodb-setting-storage.wiredTiger.collectionConfig.blockCompressor
https://www.mongodb.com/docs/manual/reference/configuration-options/#mongodb-setting-storage.wiredTiger.indexConfig.prefixCompression

 boolean true

replsets.storage.inMemory.engineConfig.inMemorySizeRatio

The ratio used to compute the storage.engine.inMemory.inMemorySizeGb option for the Replica Set nodes.

Value type Example

 _oat 0.9

replsets.livenessProbe.failureThreshold

Number of consecutive unsuccessful tries of the liveness probe to be undertaken before giving up.

Value type Example

 int 4

replsets.livenessProbe.initialDelaySeconds

Number of seconds to wait after the container start before initiating the liveness probe .

Value type Example

 int 60

replsets.livenessProbe.periodSeconds

How often to perform a liveness probe (in seconds).

Value type Example

 int 30

replsets.livenessProbe.timeoutSeconds

Number of seconds after which the liveness probe times out.

Value type Example

 int 10

replsets.livenessProbe.startupDelaySeconds

Time after which the liveness probe is failed if the MongoDB instance didn’t Dnish its full startup yet.

Value type Example

 int 7200

replsets.readinessProbe.failureThreshold

Number of consecutive unsuccessful tries of the readiness probe to be undertaken before giving up.

Value type Example

 int 8

https://www.mongodb.com/docs/manual/reference/configuration-options/#mongodb-setting-storage.inMemory.engineConfig.inMemorySizeGB
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes

replsets.readinessProbe.initialDelaySeconds

Number of seconds to wait after the container start before initiating the readiness probe .

Value type Example

 int 10

replsets.readinessProbe.periodSeconds

How often to perform a readiness probe (in seconds).

Value type Example

 int 3

replsets.readinessProbe.successThreshold

Minimum consecutive successes for the readiness probe to be considered successful after having failed.

Value type Example

 int 1

replsets.readinessProbe.timeoutSeconds

Number of seconds after which the readiness probe times out.

Value type Example

 int 2

replsets.containerSecurityContext

A custom Kubernetes Security Context for a Container to be used instead of the default one.

Value type Example

 subdoc privileged: false

replsets.podSecurityContext

A custom Kubernetes Security Context for a Pod to be used instead of the default one.

Value type Example

 subdoc

replsets.runtimeClassName

Name of the Kubernetes Runtime Class for Replica Set Pods.

Value type Example

 string image-rc

runAsUser: 1001
runAsGroup: 1001
supplementalGroups: [1001]

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/containers/runtime-class/

replsets.sidecars.image

Image for the custom sidecar container for Replica Set Pods.

Value type Example

 string busybox

replsets.sidecars.command

Command for the custom sidecar container for Replica Set Pods.

Value type Example

 array ["/bin/sh"]

replsets.sidecars.args

Command arguments for the custom sidecar container for Replica Set Pods.

Value type Example

 array ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5;done"]

replsets.sidecars.name

Name of the custom sidecar container for Replica Set Pods.

Value type Example

 string rs-sidecar-1

replsets.sidecars.volumeMounts.mountPath

Mount path of the custom sidecar container volume for Replica Set Pods.

Value type Example

 string /volume1

replsets.sidecars.volumeMounts.name

Name of the custom sidecar container volume for Replica Set Pods.

Value type Example

 string sidecar-volume-claim

replsets.sidecarVolumes.name

Name of the custom sidecar container volume for Replica Set Pods.

Value type Example

 string sidecar-config

replsets.sidecarVolumes.configMap.name

Name of the ConDgMap for a custom sidecar container volume for Replica Set Pods.

Value type Example

 string myconfigmap

replsets.sidecarVolumes.secret.secretName

Name of the Secret for a custom sidecar container volume for Replica Set Pods.

Value type Example

 string sidecar-secret

replsets.sidecarVolumes.nfs.server

The hostname of the NFS server that will provide remote Dlesystem to the custom sidecar container volume for Replica Set Pods.

Value type Example

 string nfs-service.storage.svc.cluster.local

replsets.sidecarVolumes.nfs.path

The path on the NFS server that will be provided as a remote Dlesystem to the custom sidecar container volume for Replica Set Pods.

Value type Example

 string /psmdb-some-name-rs0

replsets.sidecarPVCs

Persistent Volume Claim for the custom sidecar container volume for Replica Set Pods.

Value type Example

 subdoc

replsets.podDisruptionBudget.maxUnavailable

The Kubernetes Pod distribution budget limit specifying the maximum value for unavailable Pods.

Value type Example

 int 1

replsets.podDisruptionBudget.minAvailable

The Kubernetes Pod distribution budget limit specifying the minimum value for available Pods.

Value type Example

 int 1

replsets.splitHorizons.REPLICASET-POD-NAME.external

External URI for Split-horizon for replica set Pods of the exposed cluster.

https://kubernetes.io/docs/concepts/storage/volumes/#configmap
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://v1-20.docs.kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/

Value type Example

 string rs0-0.mycluster.xyz

replsets.splitHorizons.REPLICASET-POD-NAME.external-2

External URI for Split-horizon for replica set Pods of the exposed cluster.

Value type Example

 string rs0-0.mycluster2.xyz

replsets.expose.enabled

Enable or disable exposing MongoDB Replica Set nodes with dedicated IP addresses.

Value type Example

 boolean false

replsets.expose.type

The IP address type to be exposed.

Value type Example

 string ClusterIP

replsets.expose.loadBalancerClass

DeDne the implementation of the load balancer you want to use. This setting enables you to select a custom or speciDc load balancer class instead of the
default one provided by the cloud provider.

Value type Example

 string eks.amazonaws.com/nlb

replsets.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations).

Value type Example

 string 10.0.0.0/8

replsets.expose.annotations

The Kubernetes annotations metadata for the MongoDB mongod daemon.

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

replsets.expose.labels

The Kubernetes labels for the MongoDB Replica Set Service.

Value type Example

https://docs.mongodb.com/manual/replication/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

 string rack: rack-22

replsets.expose.internalTrafficPolicy

SpeciDes whether Service for MongoDB instances should route internal tra`c to cluster-wide or to node-local endpoints (it can in_uence the load balancing
effectiveness).

Value type Example

 boolean Local

replsets.expose.externalTrafficPolicy

SpeciDes whether Service for MongoDB instances should route external tra`c to cluster-wide (Cluster) or to node-local (Local) endpoints. It can in_uence
the load balancing effectiveness.

Value type Example

 string Local

replsets.nonvoting.enabled

Enable or disable creation of Replica Set non-voting instances within the cluster.

Value type Example

 boolean false

replsets.nonvoting.size

The number of Replica Set non-voting instances within the cluster.

Value type Example

 int 1

replsets.nonvoting.podSecurityContext

A custom Kubernetes Security Context for a Pod to be used instead of the default one.

Value type Example

 subdoc {}

replsets.nonvoting.containerSecurityContext

A custom Kubernetes Security Context for a Container to be used instead of the default one.

Value type Example

 subdoc {}

replsets.nonvoting.affinity.antiAffinityTopologyKey

The Kubernetes topologyKey node a`nity constraint for the non-voting nodes.

Value type Example

https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature

 string kubernetes.io/hostname

replsets.nonvoting.affinity.advanced

In cases where the pods require complex tuning the advanced option turns off the topologykey effect. This setting allows the standard Kubernetes a`nity
constraints of any complexity to be used.

Value type Example

 subdoc

replsets.nonvoting.tolerations.key

The Kubernetes Pod tolerations key for the non-voting nodes.

Value type Example

 string node.alpha.kubernetes.io/unreachable

replsets.nonvoting.tolerations.operator

The Kubernetes Pod tolerations operator for the non-voting nodes.

Value type Example

 string Exists

replsets.nonvoting.tolerations.effect

The Kubernetes Pod tolerations effect for the non-voting nodes.

Value type Example

 string NoExecute

replsets.nonvoting.tolerations.tolerationSeconds

The Kubernetes Pod tolerations time limit for the non-voting nodes.

Value type Example

 int 6000

replsets.nonvoting.priorityClassName

The Kuberentes Pod priority class for the non-voting nodes.

Value type Example

 string high priority

replsets.nonvoting.annotations

The Kubernetes annotations metadata for the non-voting nodes.

Value type Example

 string iam.amazonaws.com/role: role-arn

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

replsets.nonvoting.labels

The Kubernetes a`nity labels for the non-voting nodes.

Value type Example

 label rack: rack-22

replsets.nonvoting.nodeSelector

The Kubernetes nodeSelector a`nity constraint for the non-voting nodes.

Value type Example

 label disktype: ssd

replsets.nonvoting.podDisruptionBudget.maxUnavailable

The Kubernetes Pod distribution budget limit specifying the maximum value for unavailable Pods among non-voting nodes.

Value type Example

 int 1

replsets.nonvoting.podDisruptionBudget.minAvailable

The Kubernetes Pod distribution budget limit specifying the minimum value for available Pods among non-voting nodes.

Value type Example

 int 1

replsets.nonvoting.resources.limits.cpu

Kubernetes CPU limit for MongoDB container.

Value type Example

 string 300m

replsets.nonvoting.resources.limits.memory

Kubernetes Memory limit for MongoDB container.

Value type Example

 string 0.5G

replsets.nonvoting.resources.requests.cpu

The Kubernetes CPU requests for MongoDB container.

Value type Example

 string 300m

replsets.nonvoting.resources.requests.memory

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

The Kubernetes Memory requests for MongoDB container.

Value type Example

 string 0.5G

replsets.nonvoting.volumeSpec.emptyDir

The Kubernetes emptyDir volume , i.e. the directory which will be created on a node, and will be accessible to the MongoDB Pod containers.

Value type Example

 string {}

replsets.nonvoting.volumeSpec.hostPath.path

Kubernetes hostPath volume , i.e. the Dle or directory of a node that will be accessible to the MongoDB Pod containers.

Value type Example

 string /data

replsets.nonvoting.volumeSpec.hostPath.type

The Kubernetes hostPath volume type .

Value type Example

 string Directory

replsets.nonvoting.volumeSpec.persistentVolumeClaim.annotations

The Kubernetes annotations metadata for Persistent Volume Claim .

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

replsets.nonvoting.volumeSpec.persistentVolumeClaim.labels

The Kubernetes labels metadata for Persistent Volume Claim .

Value type Example

 string rack: rack-22

replsets.nonvoting.volumeSpec.persistentVolumeClaim.storageClassName

The Kubernetes Storage Class to use with the MongoDB container Persistent Volume Claim for the non-voting nodes. Use Storage Class with XFS as the
default Dlesystem if possible, [for better MongoDB performance](https://dba.stackexchange.com/questions/190578/is-xfs-still-the-best-choice-for-mongodb.

Value type Example

 string standard

replsets.nonvoting.volumeSpec.persistentVolumeClaim.accessModes

The Kubernetes Persistent Volume access modes for the MongoDB container for the non-voting nodes.

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Value type Example

 array ["ReadWriteOnce"]

replsets.nonvoting.volumeSpec.persistentVolumeClaim.resources.requests.storage

The Kubernetes Persistent Volume size for the MongoDB container for the non-voting nodes.

Value type Example

 string 3Gi

replsets.hidden.enabled

Enable or disable creation of Replica Set hidden instances within the cluster.

Value type Example

 boolean false

replsets.hidden.size

The number of Replica Set hidden instances within the cluster.

Value type Example

 int 1

replsets.hidden.podSecurityContext

A custom Kubernetes Security Context for a Pod to be used instead of the default one.

Value type Example

 subdoc {}

replsets.hidden.containerSecurityContext

A custom Kubernetes Security Context for a Container to be used instead of the default one.

Value type Example

 subdoc {}

replsets.hidden.affinity.antiAffinityTopologyKey

The Kubernetes topologyKey node a`nity constraint for the hidden nodes.

Value type Example

 string kubernetes.io/hostname

replsets.hidden.affinity.advanced

In cases where the pods require complex tuning, the advanced option turns off the topologykey effect. This setting allows the standard Kubernetes a`nity
constraints of any complexity to be used.

Value type Example

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature

 subdoc

replsets.hidden.tolerations.key

The Kubernetes Pod tolerations key for the hidden nodes.

Value type Example

 string node.alpha.kubernetes.io/unreachable

replsets.hidden.tolerations.operator

The Kubernetes Pod tolerations operator for the hidden nodes.

Value type Example

 string Exists

replsets.hidden.tolerations.effect

The Kubernetes Pod tolerations effect for the hidden nodes.

Value type Example

 string NoExecute

replsets.hidden.tolerations.tolerationSeconds

The Kubernetes Pod tolerations time limit for the hidden nodes.

Value type Example

 int 6000

replsets.hidden.priorityClassName

The Kuberentes Pod priority class for the hidden nodes.

Value type Example

 string high priority

replsets.hidden.annotations

The Kubernetes annotations metadata for the hidden nodes.

Value type Example

 string iam.amazonaws.com/role: role-arn

replsets.hidden.labels

The Kubernetes a`nity labels for the hidden nodes.

Value type Example

 label rack: rack-22

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

replsets.hidden.nodeSelector

The Kubernetes nodeSelector a`nity constraint for the hidden nodes.

Value type Example

 label disktype: ssd

replsets.hidden.podDisruptionBudget.maxUnavailable

The Kubernetes Pod distribution budget limit specifying the maximum value for unavailable Pods among hidden nodes.

Value type Example

 int 1

replsets.hidden.podDisruptionBudget.minAvailable

The Kubernetes Pod distribution budget limit specifying the minimum value for available Pods among hidden nodes.

Value type Example

 int 1

replsets.hidden.resources.limits.cpu

Kubernetes CPU limit for MongoDB container.

Value type Example

 string 300m

replsets.hidden.resources.limits.memory

Kubernetes Memory limit for MongoDB container.

Value type Example

 string 0.5G

replsets.hidden.volumeSpec.emptyDir

The Kubernetes emptyDir volume , i.e. the directory which will be created on a node, and will be accessible to the MongoDB Pod containers.

Value type Example

 string {}

replsets.hidden.volumeSpec.hostPath.path

Kubernetes hostPath volume , i.e. the Dle or directory of a node that will be accessible to the MongoDB Pod containers.

Value type Example

 string /data

replsets.hidden.volumeSpec.hostPath.type

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath

The Kubernetes hostPath volume type .

Value type Example

 string Directory

replsets.hidden.volumeSpec.persistentVolumeClaim.annotations

The Kubernetes annotations metadata for Persistent Volume Claim .

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

replsets.hidden.volumeSpec.persistentVolumeClaim.labels

The Kubernetes labels metadata for Persistent Volume Claim .

Value type Example

 string rack: rack-22

replsets.hidden.volumeSpec.persistentVolumeClaim.storageClassName

The Kubernetes Storage Class to use with the MongoDB container Persistent Volume Claim for the hidden nodes. Use Storage Class with XFS as the
default Dlesystem if possible, for better MongoDB performance .

Value type Example

 string standard

replsets.hidden.volumeSpec.persistentVolumeClaim.accessModes

The Kubernetes Persistent Volume access modes for the MongoDB container for the hidden nodes.

Value type Example

 array ["ReadWriteOnce"]

replsets.hidden.volumeSpec.persistentVolumeClaim.resources.requests.storage

The Kubernetes Persistent Volume size for the MongoDB container for the hidden nodes.

Value type Example

 string 3Gi

replsets.arbiter.enabled

Enable or disable creation of Replica Set Arbiter nodes within the cluster.

Value type Example

 boolean false

replsets.arbiter.size

The number of Replica Set Arbiter instances within the cluster.

https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://dba.stackexchange.com/questions/190578/is-xfs-still-the-best-choice-for-mongodb
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.mongodb.com/manual/core/replica-set-arbiter/
https://docs.mongodb.com/manual/core/replica-set-arbiter/

Value type Example

 int 1

replsets.arbiter.afinity.antiAffinityTopologyKey

The Kubernetes topologyKey node a`nity constraint for the Arbiter.

Value type Example

 string kubernetes.io/hostname

replsets.arbiter.affinity.advanced

In cases where the pods require complex tuning the advanced option turns off the topologykey effect. This setting allows the standard Kubernetes a`nity
constraints of any complexity to be used.

Value type Example

 subdoc

replsets.arbiter.tolerations.key

The Kubernetes Pod tolerations key for the Arbiter nodes.

Value type Example

 string node.alpha.kubernetes.io/unreachable

replsets.arbiter.tolerations.operator

The Kubernetes Pod tolerations operator for the Arbiter nodes.

Value type Example

 string Exists

replsets.arbiter.tolerations.effect

The Kubernetes Pod tolerations effect for the Arbiter nodes.

Value type Example

 string NoExecute

replsets.arbiter.tolerations.tolerationSeconds

The Kubernetes Pod tolerations time limit for the Arbiter nodes.

Value type Example

 int 6000

replsets.arbiter.priorityClassName

The Kuberentes Pod priority class for the Arbiter nodes.

Value type Example

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass

 string high priority

replsets.arbiter.annotations

The Kubernetes annotations metadata for the Arbiter nodes.

Value type Example

 string iam.amazonaws.com/role: role-arn

replsets.arbiter.labels

The Kubernetes a`nity labels for the Arbiter nodes.

Value type Example

 label rack: rack-22

replsets.arbiter.nodeSelector

The Kubernetes nodeSelector a`nity constraint for the Arbiter nodes.

Value type Example

 label disktype: ssd

replsets.resources.limits.cpu

Kubernetes CPU limit for MongoDB container.

Value type Example

 string 300m

replsets.resources.limits.memory

Kubernetes Memory limit for MongoDB container.

Value type Example

 string 0.5G

replsets.resources.requests.cpu

The Kubernetes CPU requests for MongoDB container.

Value type Example

 string 300m

replsets.resources.requests.memory

The Kubernetes Memory requests for MongoDB container.

Value type Example

 string 0.5G

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

replsets.volumeSpec.emptyDir

The Kubernetes emptyDir volume , i.e. the directory which will be created on a node, and will be accessible to the MongoDB Pod containers.

Value type Example

 string {}

replsets.volumeSpec.hostPath.path

Kubernetes hostPath volume , i.e. the Dle or directory of a node that will be accessible to the MongoDB Pod containers.

Value type Example

 string /data

replsets.volumeSpec.hostPath.type

The Kubernetes hostPath volume type .

Value type Example

 string Directory

replsets.volumeSpec.persistentVolumeClaim.annotations

The Kubernetes annotations metadata for Persistent Volume Claim .

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

replsets.volumeSpec.persistentVolumeClaim.labels

The Kubernetes labels metadata for Persistent Volume Claim .

Value type Example

 string rack: rack-22

replsets.volumeSpec.persistentVolumeClaim.storageClassName

The Kubernetes Storage Class to use with the MongoDB container Persistent Volume Claim . Use Storage Class with XFS as the default Dlesystem if
possible, for better MongoDB performance .

Value type Example

 string standard

replsets.volumeSpec.persistentVolumeClaim.accessModes

The Kubernetes Persistent Volume access modes for the MongoDB container.

Value type Example

 array ["ReadWriteOnce"]

replsets.volumeSpec.persistentVolumeClaim.resources.requests.storage

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://dba.stackexchange.com/questions/190578/is-xfs-still-the-best-choice-for-mongodb
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

The Kubernetes Persistent Volume size for the MongoDB container.

Value type Example

 string 3Gi

replsets.hostAliases.ip

The IP address for Kubernetes host aliases for replica set Pods.

Value type Example

 string "10.10.0.2"

replsets.hostAliases.hostnames

Hostnames for Kubernetes host aliases for replica set Pods.

Value type Example

 subdoc

PMM Section
The pmm section in the deploy/cr.yaml Dle contains conDguration options for Percona Monitoring and Management.

pmm.enabled

Enables or disables monitoring Percona Server for MongoDB with PMM .

Value type Example

 boolean false

pmm.image

PMM Client Docker image to use.

Value type Example

 string percona/pmm-client:2.44.1

pmm.serverHost

Address of the PMM Server to collect data from the Cluster.

Value type Example

 string monitoring-service

pmm.containerSecurityContext

A custom Kubernetes Security Context for a Container to be used instead of the default one.

Value type Example

 subdoc {}

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/network/customize-hosts-file-for-pods/
https://kubernetes.io/docs/tasks/network/customize-hosts-file-for-pods/
https://www.percona.com/doc/percona-monitoring-and-managementindex.metrics-monitor.dashboard.html
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

pmm.customClusterName

A custom name to deDne for a cluster. PMM Server uses this name to properly parse the metrics and display them on dashboards. Using a custom name is
useful for clusters deployed in different data centers - PMM Server connects them and monitors them as one deployment. Another use case is for clusters
deployed with the same name in different namespaces - PMM treats each cluster separately.

Value type Example

 string mongo-cluster

pmm.mongodParams

Additional parameters which will be passed to the pmm-admin add mongodb command for mongod Pods.

Value type Example

 string --environment=DEV-ENV --custom-labels=DEV-ENV

pmm.mongosParams

Additional parameters which will be passed to the pmm-admin add mongodb command for mongos Pods.

Value type Example

 string --environment=DEV-ENV --custom-labels=DEV-ENV

pmm.resources.requests.cpu

The Kubernetes CPU requests for PMM Client container.

Value type Example

 string 300m

pmm.resources.requests.memory

The Kubernetes Memory requests for PMM Client container.

Value type Example

 string 150M

pmm.resources.limits.cpu

Kubernetes CPU limit for PMM Client container.

Value type Example

 string 400m

pmm.resources.limits.memory

Kubernetes Memory limit for PMM Client container.

Value type Example

 string 256M

https://docs.percona.com/percona-monitoring-and-management/2/details/commands/pmm-admin.html#mongodb
https://docs.percona.com/percona-monitoring-and-management/2/details/commands/pmm-admin.html#mongodb
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Sharding Section
The sharding section in the deploy/cr.yaml Dle contains conDguration options for Percona Server for MondoDB sharding.

sharding.enabled

Enables or disables Percona Server for MondoDB sharding .

Value type Example

 boolean true

sharding.configsvrReplSet.size

The number of ConDg Server instances within the cluster.

Value type Example

 int 3

sharding.configsvrReplSet.terminationGracePeriodSeconds

The amount of seconds Kubernetes will wait for a clean conDg server Pods termination.

Value type Example

 int 300

sharding.configsvrReplSet.serviceAccountName

Name of the separate privileged service account for ConDg Server Pods.

Value type Example

 string default

sharding.configsvrReplSet.topologySpreadConstraints.labelSelector.matchLabels

The label selector for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 label app.kubernetes.io/name: percona-server-mongodb

sharding.configsvrReplSet.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread Constraints .

Value type Example

 int 1

sharding.configsvrReplSet.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

Value type Example

https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

 string kubernetes.io/hostname

sharding.configsvrReplSet.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string DoNotSchedule

sharding.configsvrReplSet.externalNodes.host

The URL or IP address of the external conDg server instance.

Value type Example

 string 34.124.76.90

sharding.configsvrReplSet.externalNodes.port

The port number of the external conDg server instance.

Value type Example

 string 27017

sharding.configsvrReplSet.externalNodes.votes

The number of votes of the external conDg server instance.

Value type Example

 string 0

sharding.configsvrReplSet.externalNodes.priority

The priority of the external conDg server instance.

Value type Example

 string 0

sharding.configsvrReplSet.configuration

Custom conDguration options for ConDg Servers. Please refer to the o`cial manual for the full list of options.

Value type Example

 string

sharding.configsvrReplSet.livenessProbe.failureThreshold

Number of consecutive unsuccessful tries of the liveness probe to be undertaken before giving up.

Value type Example

|
operationProfiling:
 mode: slowOp
systemLog:
 verbosity: 1

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://docs.mongodb.com/manual/reference/replica-configuration/#mongodb-rsconf-rsconf.members-n-.votes
https://docs.mongodb.com/manual/reference/replica-configuration/#mongodb-rsconf-rsconf.members-n-.priority
https://docs.mongodb.com/manual/reference/configuration-options/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes

 int 4

sharding.configsvrReplSet.livenessProbe.initialDelaySeconds

Number of seconds to wait after the container start before initiating the liveness probe .

Value type Example

 int 60

sharding.configsvrReplSet.livenessProbe.periodSeconds

How often to perform a liveness probe (in seconds).

Value type Example

 int 30

sharding.configsvrReplSet.livenessProbe.timeoutSeconds

Number of seconds after which the liveness probe times out.

Value type Example

 int 10

sharding.configsvrReplSet.livenessProbe.startupDelaySeconds

Time after which the liveness probe is failed if the MongoDB instance didn’t Dnish its full startup yet.

Value type Example

 int 7200

sharding.configsvrReplSet.readinessProbe.failureThreshold

Number of consecutive unsuccessful tries of the readiness probe to be undertaken before giving up.

Value type Example

 int 3

sharding.configsvrReplSet.readinessProbe.initialDelaySeconds

Number of seconds to wait after the container start before initiating the readiness probe .

Value type Example

 int 10

sharding.configsvrReplSet.readinessProbe.periodSeconds

How often to perform a readiness probe (in seconds).

Value type Example

 int 3

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes

sharding.configsvrReplSet.readinessProbe.successThreshold

Minimum consecutive successes for the readiness probe to be considered successful after having failed.

Value type Example

 int 1

sharding.configsvrReplSet.readinessProbe.timeoutSeconds

Number of seconds after which the readiness probe times out.

Value type Example

 int 2

sharding.configsvrReplSet.containerSecurityContext

A custom Kubernetes Security Context for a Container to be used instead of the default one.

Value type Example

 subdoc privileged: false

sharding.configsvrReplSet.podSecurityContext

A custom Kubernetes Security Context for a Pod to be used instead of the default one.

Value type Example

 subdoc

sharding.configsvrReplSet.runtimeClassName

Name of the Kubernetes Runtime Class for ConDg Server Pods.

Value type Example

 string image-rc

sharding.configsvrReplSet.sidecars.image

Image for the custom sidecar container for ConDg Server Pods.

Value type Example

 string busybox

sharding.configsvrReplSet.sidecars.command

Command for the custom sidecar container for ConDg Server Pods.

Value type Example

 array ["/bin/sh"]

runAsUser: 1001
runAsGroup: 1001
supplementalGroups: [1001]

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/containers/runtime-class/

sharding.configsvrReplSet.sidecars.args

Command arguments for the custom sidecar container for ConDg Server Pods.

Value type Example

 array ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5;done"]

sharding.configsvrReplSet.sidecars.name

Name of the custom sidecar container for ConDg Server Pods.

Value type Example

 string rs-sidecar-1

sharding.configsvrReplSet.sidecarVolumes.name

Name of the custom sidecar container volume for ConDg Server Pods.

Value type Example

 string sidecar-config

sharding.configsvrReplSet.sidecarVolumes.nfs.server

The hostname of the NFS server that will provide remote Dlesystem to the custom sidecar container volume for ConDg Server Pods.

Value type Example

 string nfs-service.storage.svc.cluster.local

sharding.configsvrReplSet.sidecarVolumes.nfs.path

The path on the NFS server that will be provided as a remote Dlesystem to the custom sidecar container volume for ConDg Server Pods.

Value type Example

 string /psmdb-some-name-rs0

sharding.configsvrReplSet.limits.cpu

Kubernetes CPU limit for ConDg Server container.

Value type Example

 string 300m

sharding.configsvrReplSet.limits.memory

Kubernetes Memory limit for ConDg Server container.

Value type Example

 string 0.5G

sharding.configsvrReplSet.resources.requests.cpu

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

The Kubernetes CPU requests for ConDg Server container.

Value type Example

 string 300m

sharding.configsvrReplSet.requests.memory

The Kubernetes Memory requests for ConDg Server container.

Value type Example

 string 0.5G

sharding.configsvrReplSet.expose.enabled

Enable or disable exposing ConDg Server nodes with dedicated IP addresses.

Value type Example

 boolean false

sharding.configsvrReplSet.expose.type

The IP address type to be exposed.

Value type Example

 string ClusterIP

sharding.configsvrReplSet.expose.loadBalancerClass

DeDne the implementation of the load balancer you want to use. This setting enables you to select a custom or speciDc load balancer class instead of the
default one provided by the cloud provider.

Value type Example

 string eks.amazonaws.com/nlb

sharding.configsvrReplSet.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations).

Value type Example

 string 10.0.0.0/8

sharding.configsvrReplSet.expose.annotations

The Kubernetes annotations metadata for the ConDg Server daemon.

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

sharding.configsvrReplSet.expose.labels

The Kubernetes labels for the ConDg Server Service.

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://www.mongodb.com/docs/manual/core/sharded-cluster-config-servers/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Value type Example

 string rack: rack-22

sharding.configsvrReplSet.expose.internalTrafficPolicy

SpeciDes whether Service for conDg servers should route internal tra`c to cluster-wide or to node-local endpoints (it can in_uence the load balancing
effectiveness).

Value type Example

 boolean Local

sharding.configsvrReplSet.expose.externalTrafficPolicy

SpeciDes whether Service for conDg servers should route external tra`c to cluster-wide (Cluster) or to node-local (Local) endpoints. It can in_uence the
load balancing effectiveness.

Value type Example

 string Local

sharding.configsvrReplSet.volumeSpec.emptyDir

The Kubernetes emptyDir volume , i.e. the directory which will be created on a node, and will be accessible to the ConDg Server Pod containers.

Value type Example

 string {}

sharding.configsvrReplSet.volumeSpec.hostPath.path

Kubernetes hostPath volume , i.e. the Dle or directory of a node that will be accessible to the ConDg Server Pod containers.

Value type Example

 string /data

sharding.configsvrReplSet.volumeSpec.hostPath.type

The Kubernetes hostPath volume type .

Value type Example

 string Directory

sharding.configsvrReplSet.volumeSpec.persistentVolumeClaim.annotations

The Kubernetes annotations metadata for Persistent Volume Claim .

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

sharding.configsvrReplSet.volumeSpec.persistentVolumeClaim.labels

The Kubernetes labels metadata for Persistent Volume Claim .

https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

Value type Example

 string rack: rack-22

sharding.configsvrReplSet.volumeSpec.persistentVolumeClaim.storageClassName

The Kubernetes Storage Class to use with the ConDg Server container Persistent Volume Claim . Use Storage Class with XFS as the default Dlesystem if
possible, for better MongoDB performance .

Value type Example

 string standard

sharding.configsvrReplSet.volumeSpec.persistentVolumeClaim.accessModes

The Kubernetes Persistent Volume access modes for the ConDg Server container.

Value type Example

 array ["ReadWriteOnce"]

sharding.configsvrReplSet.volumeSpec.persistentVolumeClaim.resources.requests.storage

The Kubernetes Persistent Volume size for the ConDg Server container.

Value type Example

 string 3Gi

sharding.configsvrReplSet.hostAliases.ip

The IP address for Kubernetes host aliases for replica set Pods.

Value type Example

 string "10.10.0.2"

sharding.configsvrReplSet.hostAliases.hostnames

Hostnames for Kubernetes host aliases for conDg server Pods.

Value type Example

 subdoc

sharding.configsvrReplSet.splitHorizons.CFGREPLICASET-POD-NAME.external

External URI for Split-horizon for ConDg Server replica set Pods of the exposed cluster.

Value type Example

 string cfg-0.mycluster.xyz

sharding.configsvrReplSet.splitHorizons.CFGREPLICASET-POD-NAME.external-2

External URI for Split-horizon for ConDg Server replica set Pods of the exposed cluster.

Value type Example

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://dba.stackexchange.com/questions/190578/is-xfs-still-the-best-choice-for-mongodb
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/network/customize-hosts-file-for-pods/
https://kubernetes.io/docs/tasks/network/customize-hosts-file-for-pods/

 string cfg-0.mycluster2.xyz

sharding.mongos.size

The number of mongos instances within the cluster.

Value type Example

 int 3

sharding.mongos.terminationGracePeriodSeconds

The amount of seconds Kubernetes will wait for a clean mongos Pods termination.

Value type Example

 int 300

sharding.mongos.serviceAccountName

Name of the separate privileged service account for mongos Pods.

Value type Example

 string default

sharding.mongos.topologySpreadConstraints.labelSelector.matchLabels

The label selector for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 label app.kubernetes.io/name: percona-server-mongodb

sharding.mongos.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread Constraints .

Value type Example

 int 1

sharding.mongos.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string kubernetes.io/hostname

sharding.mongos.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string DoNotSchedule

https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

sharding.mongos.configuration

Custom conDguration options for mongos. Please refer to the o`cial manual for the full list of options.

Value type Example

 string

sharding.mongos.afinity.antiAffinityTopologyKey

The Kubernetes topologyKey node a`nity constraint for mongos.

Value type Example

 string kubernetes.io/hostname

sharding.mongos.affinity.advanced

In cases where the Pods require complex tuning the advanced option turns off the topologykey effect. This setting allows the standard Kubernetes a`nity
constraints of any complexity to be used.

Value type Example

 subdoc

sharding.mongos.tolerations.key

The Kubernetes Pod tolerations key for mongos instances.

Value type Example

 string node.alpha.kubernetes.io/unreachable

sharding.mongos.tolerations.operator

The Kubernetes Pod tolerations operator for mongos instances.

Value type Example

 string Exists

sharding.mongos.tolerations.effect

The Kubernetes Pod tolerations effect for mongos instances.

Value type Example

 string NoExecute

sharding.mongos.tolerations.tolerationSeconds

The Kubernetes Pod tolerations time limit for mongos instances.

Value type Example

 int 6000

|
systemLog:
 verbosity: 1

https://docs.mongodb.com/manual/reference/configuration-options/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

sharding.mongos.priorityClassName

The Kuberentes Pod priority class for mongos instances.

Value type Example

 string high priority

sharding.mongos.annotations

The Kubernetes annotations metadata for the mongos instances.

Value type Example

 string iam.amazonaws.com/role: role-arn

sharding.mongos.labels

The Kubernetes a`nity labels for mongos instances.

Value type Example

 label rack: rack-22

sharding.mongos.nodeSelector

The Kubernetes nodeSelector a`nity constraint for mongos instances.

Value type Example

 label disktype: ssd

sharding.mongos.livenessProbe.failureThreshold

Number of consecutive unsuccessful tries of the liveness probe to be undertaken before giving up.

Value type Example

 int 4

sharding.mongos.livenessProbe.initialDelaySeconds

Number of seconds to wait after the container start before initiating the liveness probe .

Value type Example

 int 60

sharding.mongos.livenessProbe.periodSeconds

How often to perform a liveness probe (in seconds).

Value type Example

 int 30

sharding.mongos.livenessProbe.timeoutSeconds

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes

Number of seconds after which the liveness probe times out.

Value type Example

 int 10

sharding.mongos.livenessProbe.startupDelaySeconds

Time after which the liveness probe is failed if the MongoDB instance didn’t Dnish its full startup yet.

Value type Example

 int 7200

sharding.mongos.readinessProbe.failureThreshold

Number of consecutive unsuccessful tries of the readiness probe to be undertaken before giving up.

Value type Example

 int 3

sharding.mongos.readinessProbe.initialDelaySeconds

Number of seconds to wait after the container start before initiating the readiness probe .

Value type Example

 int 10

sharding.mongos.readinessProbe.periodSeconds

How often to perform a readiness probe (in seconds).

Value type Example

 int 3

sharding.mongos.readinessProbe.successThreshold

Minimum consecutive successes for the readiness probe to be considered successful after having failed.

Value type Example

 int 1

sharding.mongos.readinessProbe.timeoutSeconds

Number of seconds after which the readiness probe times out.

Value type Example

 int 2

sharding.mongos.containerSecurityContext

A custom Kubernetes Security Context for a Container to be used instead of the default one.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Value type Example

 subdoc privileged: false

sharding.mongos.podSecurityContext

A custom Kubernetes Security Context for a Pod to be used instead of the default one.

Value type Example

 subdoc

sharding.mongos.runtimeClassName

Name of the Kubernetes Runtime Class for mongos Pods.

Value type Example

 string image-rc

sharding.mongos.sidecars.image

Image for the custom sidecar container for mongos Pods.

Value type Example

 string busybox

sharding.mongos.sidecars.command

Command for the custom sidecar container for mongos Pods.

Value type Example

 array ["/bin/sh"]

sharding.mongos.sidecars.args

Command arguments for the custom sidecar container for mongos Pods.

Value type Example

 array ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5;done"]

sharding.mongos.sidecars.name

Name of the custom sidecar container for mongos Pods.

Value type Example

 string rs-sidecar-1

sharding.mongos.limits.cpu

Kubernetes CPU limit for mongos container.

Value type Example

runAsUser: 1001
runAsGroup: 1001
supplementalGroups: [1001]

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/containers/runtime-class/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

 string 300m

sharding.mongos.limits.memory

Kubernetes Memory limit for mongos container.

Value type Example

 string 0.5G

sharding.mongos.resources.requests.cpu

The Kubernetes CPU requests for mongos container.

Value type Example

 string 300m

sharding.mongos.requests.memory

The Kubernetes Memory requests for mongos container.

Value type Example

 string 0.5G

sharding.mongos.expose.type

The IP address type to be exposed.

Value type Example

 string ClusterIP

sharding.mongos.expose.servicePerPod

If set to true , a separate ClusterIP Service is created for each mongos instance.

Value type Example

 boolean true

sharding.mongos.expose.loadBalancerClass

DeDne the implementation of the load balancer you want to use. This setting enables you to select a custom or speciDc load balancer class instead of the
default one provided by the cloud provider.

Value type Example

 string eks.amazonaws.com/nlb

sharding.mongos.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations).

Value type Example

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

 string 10.0.0.0/8

sharding.mongos.expose.annotations

The Kubernetes annotations metadata for the MongoDB mongos daemon.

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

sharding.mongos.expose.labels

The Kubernetes labels for the MongoDB mongos Service.

Value type Example

 string rack: rack-22

sharding.mongos.expose.nodePort

The Node port number to be allocated for the MongoDB mongos Service when the sharding.mongos.expose.type is set to the NodePort , and
sharding.mongos.expose.servicePerPod is not turned on.

Value type Example

 int 32017

sharding.mongos.internalTrafficPolicy

SpeciDes whether Services for the mongos instances should route internal tra`c to cluster-wide or to node-local endpoints (it can in_uence the load
balancing effectiveness).

Value type Example

 boolean Local

sharding.mongos.externalTrafficPolicy

SpeciDes whether Service for the mongos instances should route external tra`c to cluster-wide (Cluster) or to node-local (Local) endpoints. It can
in_uence the load balancing effectiveness.

Value type Example

 string Local

sharding.mongos.hostAliases.ip

The IP address for Kubernetes host aliases for mongos Pods.

Value type Example

 string "10.10.0.2"

sharding.mongos.hostAliases.hostnames

Hostnames for Kubernetes host aliases for mongos Pods.

Value type Example

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/network/customize-hosts-file-for-pods/
https://kubernetes.io/docs/tasks/network/customize-hosts-file-for-pods/

 subdoc

Roles section
The roles section in the deploy/cr.yaml Dle contains various conDguration options to conDgure custom MongoDB user roles via the Custom Resource.

roles.role

The cusom MongoDB role name.

Value type Example

 string myClusterwideAdmin

roles.db

Database in which you want to store the user-deDned role.

Value type Example

 string `admin

roles.authenticationRestrictions.clientSource

List of the IP addresses or CIDR blocks from which users assigned this role can connect. MongoDB servers reject connection requests from users with this role if
the requests come from a client that is not present in this array.

Value type Example

 subdoc 127.0.0.1

roles.authenticationRestrictions.serverAddress

List of the IP addresses or CIDR blocks to which users assigned this role can connect. MongoDB servers reject connection requests from users with this role if
the client requests to connect to a server that is not present in this array.

Value type Example

 subdoc 127.0.0.1

roles.privileges.actions

List of custom role actions that users granted this role can perform: For a list of accepted values, see Privilege Actions in the MongoDB Manual.

Value type Example

 subdoc addShard

roles.privileges.resource.db

Database for which the custom role actions apply. An empty string (“”) indicates that the privilege actions apply to all databases.

Value type Example

 string ""

roles.privileges.resource.collection

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://www.mongodb.com/docs/manual/core/security-user-defined-roles/
https://www.mongodb.com/docs/manual/reference/privilege-actions/#database-management-actions

Collection for which the custom role actions apply. An empty string (“”) indicates that the privilege actions apply to all of the database’s collections.

Value type Example

 string ""

roles.privileges.resource.cluster

If true, the custom role actions apply to all databases and collections in the MongoDB deployment. False by default. If set to true, values
for roles.privileges.resource.db and roles.privileges.resource.collection shouldn’t be provided.

Value type Example

 boolean true

roles.roles

An array of roles (with names of the role and the database) from which this role inherits privileges, if any.

Value type Example

 subdoc

Users section
The users section in the deploy/cr.yaml Dle contains various conDguration options to conDgure custom MongoDB users via the Custom Resource.

users.name

The username of the MongoDB user.

Value type Example

 string my-user

users.db

Database that the user authenticates against.

Value type Example

 string admin

users.passwordSecretRef.name

Name of the secret that contains the user’s password. If passwordSecretRef is not present, password will be generated automatically.

Value type Example

 string my-user-password

users.passwordSecretRef.key

Key in the secret that corresponds to the value of the user’s password (password by default).

Value type Example

role: read
db: admin

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

 string password

users.roles.role.name

Name of the MongoDB role assigned to the user. As built-in roles, so custom roles are supported.

Value type Example

 string clusterAdmin

users.roles.role.db

Database that the MongoDB role applies to.

Value type Example

 string admin

Backup Section
The backup section in the deploy/cr.yaml Dle contains the following conDguration options for the regular Percona Server for MongoDB backups.

backup.enabled

Enables or disables making backups.

Value type Example

 boolean true

backup.image

The Percona Server for MongoDB Docker image to use for the backup.

Value type Example

 string percona/percona-server-mongodb-operator:1.21.1-backup

backup.startingDeadlineSeconds

The maximum time in seconds for a backup to start. The Operator compares the timestamp of the backup object against the current time. If the backup is not
started within the set time, the Operator automatically marks it as “failed”.

If your cluster is starting or is not in the READY state when you start a backup, such backup will be marked as failed .

You can override this setting for a speciDc backup in the deploy/backup/backup.yaml conDguration Dle.

Value type Example

 int 300

backup.serviceAccountName

Name of the separate privileged service account for backups; service account for backups is not used by the Operator any more, and the option is deprecated
since the Operator version 1.16.0.

Value type Example

 string percona-server-mongodb-operator

https://www.mongodb.com/docs/manual/reference/built-in-roles/#built-in-roles
https://github.com/mongodb/mongodb-kubernetes-operator/blob/master/docs/deploy-configure.md#define-a-custom-database-role
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

backup.annotations

The Kubernetes annotations metadata for the backup job.

Value type Example

 string sidecar.istio.io/inject: "false"

backup.resources.limits.cpu

Kubernetes CPU limit for backups.

Value type Example

 string 300m

backup.resources.limits.memory

Kubernetes Memory limit for backups.

Value type Example

 string 1.2G

backup.resources.requests.cpu

The Kubernetes CPU requests for backups.

Value type Example

 string 300m

backup.resources.requests.memory

The Kubernetes Memory requests for backups.

Value type Example

 string 1G

backup.containerSecurityContext

A custom Kubernetes Security Context for a Container to be used instead of the default one.

Value type Example

 subdoc privileged: false

backup.storages.STORAGE-NAME.main

Marks the storage as main. All other storages you deDne are added as proDles. The Operator saves backups to all storages but it saves oplog chunks for point-in-
time recovery only to the main storage. You can deDne only one storage as main. Read more about multiple storages for backups.

Value type Example

 boolean true

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

backup.storages.STORAGE-NAME.type

The cloud storage type used for backups. Only s3 , gcs , minio , azure , and filesystem types are supported.

Value type Example

 string s3

backup.storages.STORAGE-NAME.s3.insecureSkipTLSVerify

Enable or disable veriDcation of the storage server TLS certiDcate. Disabling it may be useful e.g. to skip TLS veriDcation for private S3-compatible storage with a
self-issued certiDcate.

Value type Example

 boolean true

backup.storages.STORAGE-NAME.s3.credentialsSecret

The Kubernetes secret for backups. It should contain AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY keys.

Value type Example

 string my-cluster-name-backup-s3

backup.storages.STORAGE-NAME.s3.bucket

The Amazon S3 bucket name for backups.

Value type Example

 string

backup.storages.STORAGE-NAME.s3.prefix

The path (sub-folder) to the backups inside the bucket .

Value type Example

 string ""

backup.storages.STORAGE-NAME.s3.uploadPartSize

The size of data chunks in bytes to be uploaded to the storage bucket (10 MiB by default).

Value type Example

 int 10485760

backup.storages.STORAGE-NAME.s3.maxUploadParts

The maximum number of data chunks to be uploaded to the storage bucket (10000 by default).

Value type Example

 int 10000

backup.storages.STORAGE-NAME.s3.storageClass

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

The storage class name of the S3 storage.

Value type Example

 string STANDARD

backup.storages.STORAGE-NAME.s3.retryer.numMaxRetries

The maximum number of retries to upload data to S3 storage.

Value type Example

 int 3

backup.storages.STORAGE-NAME.s3.retryer.minRetryDelay

The minimum time in milliseconds to wait till the next retry.

Value type Example

 int 10

backup.storages.STORAGE-NAME.s3.retryer.maxRetryDelay

The maximum time in minutes to wait till the next retry.

Value type Example

 int 5

backup.storages.STORAGE-NAME.s3.region

The AWS region to use. Please note this option is mandatory for Amazon and all S3-compatible storages.

Value type Example

 string us-east-1

backup.storages.STORAGE-NAME.s3.endpointUrl

The URL of the S3-compatible storage to be used. It is required for Minio storage and is not needed for the original Amazon S3 cloud.

Value type Example

 string

backup.storages.STORAGE-NAME.s3.serverSideEncryption.kmsKeyID

The ID of the key stored in the AWS KMS used by the Operator for backups server-side encryption

Value type Example

 string ""

backup.storages.STORAGE-NAME.s3.serverSideEncryption.sseAlgorithm

The key management mode used for backups server-side encryption with the encryption keys stored in AWS KMS - aws:kms is the only supported value for
now.

https://aws.amazon.com/s3/storage-classes
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys
https://aws.amazon.com/kms/

Value type Example

 string aws:kms

backup.storages.STORAGE-NAME.s3.serverSideEncryption.sseCustomerAlgorithm

The key management mode for backups server-side encryption with customer-provided keys - AES256 is the only supported value for now.

Value type Example

 string AES256

backup.storages.STORAGE-NAME.s3.serverSideEncryption.sseCustomerKey

The locally-stored base64-encoded custom encryption key used by the Operator for backups server-side encryption on S3-compatible storages.

Value type Example

 string ""

backup.storages.STORAGE-NAME.gcs.bucket

The name of the storage bucket. See the GCS bucket naming guidelines for bucket name requirements.

Value type Example

 string ""

backup.storages.STORAGE-NAME.gcs.prefix

The path to the data directory in the bucket. If undeDned, backups are stored in the bucket’s root directory.

Value type Example

 string ""

backup.storages.STORAGE-NAME.gcs.credentialsSecret

The Kubernetes secret for backups. It contains the GCS credentials as either the service account and JSON keys or HMAC keys.

Value type Example

 string "my-cluster-name-backup-gcs"

backup.storages.STORAGE-NAME.gcs.chunkSize

The size of data chunks in bytes to be uploaded to the GCS storage bucket in a single request. Larger data chunks will be split over multiple requests. Default
data chunk size is 10MB.

Value type Example

 string 10485760

backup.storages.STORAGE-NAME.gcs.retryer.backoffInitial

The time to wait to make an initial retry, in seconds. Default value is 1 sec

Value type Example

https://cloud.google.com/storage/docs/naming-buckets#requirements
https://kubernetes.io/docs/concepts/configuration/secret/

:material-code-int: int 1

backup.storages.STORAGE-NAME.gcs.retryer.backoffMax

The maximum amount of time between retries, in seconds. Default value is 30 sec.

Value type Example

:material-code-int: int 30

backup.storages.STORAGE-NAME.gcs.retryer.backoffMultiplier

DeDnes the time to increase the wait time after each retry. For example, with the default value of 2 seconds, if the Drst wait time is 1 second, the next will be 2
seconds, then 4 seconds, and so on, until it reaches the maximum.

Value type Example

:material-code-int: int 2

backup.storages.STORAGE-NAME.azure.credentialsSecret

The Kubernetes secret for backups. It should contain AZURE_STORAGE_ACCOUNT_NAME and AZURE_STORAGE_ACCOUNT_KEY |

Value type Example

 string my-cluster-azure-secret

backup.storages.STORAGE-NAME.azure.container

Name of the container for backups.

Value type Example

 string my-container

backup.storages.STORAGE-NAME.azure.prefix

The path (sub-folder) to the backups inside the container .

Value type Example

 string ""

backup.storages.STORAGE-NAME.azure.endpointUrl

The private endpoint URL to use instead of the public endpoint.

Value type Example

 string https://accountName.blob.core.windows.net

backup.storages.STORAGE-NAME.filesystem.path

The mount point for a remote Dlesystem conDgured to store backups.

Value type Example

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://learn.microsoft.com/en-us/azure/private-link/private-endpoint-overview

 string /mnt/nfs/

backup.volumeMounts.mountPath

Mount path for the remote backup storage.

Value type Example

 string /mnt/nfs/

backup.volumeMounts.name

Name of the remote backup storage.

Value type Example

 string backup-nfs

backup.pitr.enabled

Enables or disables point-in-time-recovery functionality.

Value type Example

 boolean false

backup.pitr.oplogOnly

If true, Percona Backup for MongoDB saves oplog chunks even without the base logical backup snapshot (oplog chunks without a base backup can’t be used
with logical backups to restore a backup by the Operator, but can still be useful for manual restore operations).

Value type Example

 boolean false

backup.pitr.oplogSpanMin

Number of minutes between the uploads of oplogs.

Value type Example

 int 10

backup.pitr.compressionType

The point-in-time-recovery chunks compression format, can be gzip, snappy, lz4, pgzip, zstd, s2, or none .

Value type Example

 string gzip

backup.pitr.compressionLevel

The point-in-time-recovery chunks compression level (higher values result in better but slower compression).

Value type Example

 int 6

https://docs.percona.com/percona-backup-mongodb/usage/oplog-replay.html
https://docs.percona.com/percona-backup-mongodb/point-in-time-recovery.html#incremental-backups
https://docs.percona.com/percona-backup-mongodb/point-in-time-recovery.html#incremental-backups

backup.configuration.backupOptions.priority

The list of mongod nodes and their priority for making backups.

Value type Example

 subdoc

backup.configuration.backupOptions.timeouts.startingStatus

The wait time in seconds Percona Backup for MongoDB should use to start physical backups on all shards. The 0 (zero) value resets the timeout to the default
33 seconds.

Value type Example

 int 33

backup.configuration.backupOptions.oplogSpanMin

The duration (in minutes) of oplog slices saved by Percona Backup for MongoDB with the logical backup snapshot.

Value type Example

 int 10

backup.configuration.restoreOptions.batchSize

The number of documents Percona Backup for MongoDB should buffer.

Value type Example

 int 500

backup.configuration.restoreOptions.numInsertionWorkers

The number of workers that Percona Backup for MongoDB should use to add the documents to buffer.

Value type Example

 int 10

backup.configuration.restoreOptions.numDownloadWorkers

The number of workers that Percona Backup for MongoDB should use to request data chunks from the storage during the restore.

Value type Example

 int 4

backup.configuration.restoreOptions.maxDownloadBufferMb

The maximum size of the in-memory buffer that Percona Backup for MongoDB should use use when downloading Dles from the S3 storage.

Value type Example

 int 0

“localhost:28019”: 2.5
“localhost:27018”: 2.5

backup.configuration.restoreOptions.downloadChunkMb

The size of the data chunk in MB, that Percona Backup for MongoDB should use when downloading from the S3 storage.

Value type Example

 int 32

backup.configuration.restoreOptions.mongodLocation

The custom path to mongod binaries which Percona Backup for MongoDB should use during restore.

Value type Example

 string /usr/bin/mongo

backup.configuration.restoreOptions.mongodLocationMap

The list of custom paths to mongod binaries on every node, which Percona Backup for MongoDB should use during restore.

Value type Example

 subdoc

backup.tasks.name

The name of the backup.

Value type Example

 string

backup.tasks.enabled

Enables or disables this exact backup.

Value type Example

 boolean true

backup.tasks.schedule

The scheduled time to make a backup, speciDed in the crontab format .

Value type Example

 string 0 0 * * 6

backup.tasks.keep

This option is deprecated and kept for backward compatibility. Use the backup.tasks.retention .

The amount of most recent backups to store. Older backups are automatically deleted. Set keep to zero or completely remove it to disable automatic deletion of
backups. subsection instead.

Value type Example

 int 3

“node01:2017”: /usr/bin/mongo
“node03:27017”: /usr/bin/mongo

https://en.wikipedia.org/wiki/Cron

backup.tasks.retention.type

DeDnes how to retain backups. The type of retention defaults to count .

Value type Example

 string count

backup.tasks.retention.count

DeDnes the number of backups to store. Older backups are automatically deleted from the cluster.

Value type Example

 string count

backup.tasks.retention.deleteFromStorage

DeDnes if the backups are deleted from the cloud storage too. Supported only for AWS and Azure storage.

Value type Example

 boolean true

backup.tasks.storageName

The name of the S3-compatible storage for backups, conDgured in the storages subsection.

Value type Example

 string st-us-west

backup.tasks.compressionType

The backup compression format, can be gzip, snappy, lz4, pgzip, zstd, s2, or none .

Value type Example

 string gzip

backup.tasks.compressionLevel

The backup compression level (higher values result in better but slower compression).

Value type Example

 int 6

backup.tasks.type

The backup type: (can be either logical (default) or physical ; see the Operator backups o`cial documentation for details.

Value type Example

 string physical

Log Collector section

https://docs.percona.com/percona-backup-mongodb/running.html#starting-a-backup
https://docs.percona.com/percona-backup-mongodb/running.html#starting-a-backup

The logcollector section contains conDguration options for Fluent Bit Log Collector .

logcollector.enabled

Enables or disables cluster-level logging with Fluent Bit.

Value type Example

 boolean true

logcollector.image

Log Collector Docker image to use.

Value type Example

 string perconalab/fluentbit:main-logcollector

logcollector.configuration

Additional conDguration options (see Fluent Bit o`cial documentation for details).

Value type Example

 subdoc

logcollector.resources.requests.memory

The Kubernetes memory requests for a Log Collector sidecar container in a Percona Server for MongoDB Pod.

Value type Example

 string 100M

logcollector.resources.requests.cpu

Kubernetes CPU requests for a Log collector sidecar container in a Percona Server for MongoDB Pod.

Value type Example

 string 200m

https://fluentbit.io/
https://docs.fluentbit.io/manual/administration/configuring-fluent-bit/classic-mode/configuration-file
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

11.2 Backup Resource options
A Backup resource is a Kubernetes object that tells the Operator how to create and manage your database backups. The deploy/backup/backup.yaml Dle is a
template for creating backup resources when you make an on-demand backup. It deDnes the PerconaServerMongoDBBackup resource.

This document describes all available options that you can use to customize your backups.

apiVersion

SpeciDes the API version of the Custom Resource. psmdb.percona.com indicates the group, and v1 is the version of the API.

kind

DeDnes the type of resource being created: PerconaServerMongoDBBackup .

metadata

The metadata part of the deploy/backup/backup.yaml contains metadata about the resource, such as its name and other attributes. It includes the following
keys:

finalizers ensure safe deletion of resources in Kubernetes under certain conditions. This subsection includes the following Dnalizers:

percona.com/delete-backup - deletes the backup resource after the backup data is deleted from storage. Note that it is ignored for incremental
backups.

name - The name of the backup resource used to identify it in your deployment. You also use the backup name for the restore operation.

spec

This subsection includes the conDguration of a backup resource.

clusterName

SpeciDes the name of the MongoDB cluster to back up.

Value type Example

 string my-cluster-name

storageName

SpeciDes the name of the storage where to save a backup. It must match the name you speciDed in the spec.backup.storages subsection of the
deploy/cr.yaml Dle.

Value type Example

 string s3-us-west

type

SpeciDes the backup type. Supported types are: logical , physical , incremental-base , incremental .

Value type Example

 string physical

compressionType

SpeciDes the compression algorithm for backups. Supported values are: gzip , pgzip , zstd , snappy . Read more about compression types in the ConDgure
backup compression section of PBM documentation.

Value type Example

 string gzip

compressionLevel

SpeciDes the compression level. Note that the higher value you specify, the more time and computing resources it will take to compress the data. The default
value depends on the compression method used. Read more about compression levels in the ConDgure backup compression section of PBM documentation.

Value type Example

 string 6

startingDeadlineSeconds

The maximum time in seconds for a backup to start. The Operator compares the timestamp of the backup object against the current time. If the backup is not
started within the set time, the Operator automatically marks it as “failed”.

Value type Example

 int 300

https://docs.percona.com/percona-backup-mongodb/usage/compression.html#configure-backup-compression
https://docs.percona.com/percona-backup-mongodb/usage/compression.html#configure-backup-compression

11.3 Restore Resource options
A Restore resource is a Kubernetes object that tells the Operator how to restore your database from a speciDc backup. The deploy/backup/restore.yaml Dle
is a template for creating restore resources. It deDnes the PerconaServerMongoDBRestore resource.

This document describes all available options that you can use to customize a restore.

apiVersion

SpeciDes the API version of the Custom Resource. psmdb.percona.com indicates the group, and v1 is the version of the API.

kind

DeDnes the type of resource being created: PerconaServerMongoDBRestore .

metadata

The metadata part of the deploy/backup/restore.yaml contains metadata about the resource, such as its name and other attributes. It includes the following
keys:

name - The name of the restore object used to identify it in your deployment. You use this name to track the restore operation status and view information
about it.

spec

This section includes the conDguration of a restore resource.

clusterName

SpeciDes the name of the MongoDB cluster to restore.

Value type Example

 string my-cluster-name

backupName

SpeciDes the name of a backup to be used for a restore. This backup should be from the same cluster.

Value type Example

 string backup1

The selective subsection
Controls the selective restore, which enables you to restore a speciDc subset of namespaces - databases and collections.

selective.withUsersAndRoles

Allows restoring speciDed custom databases with users and roles that were created against them. Read more about Selective restore with users and roles in
PBM documentation.

Value type Example

 boolean true

selective.namespaces

https://docs.percona.com/percona-backup-mongodb/features/selective-backup.html#restore-a-database-with-users-and-roles

SpeciDes the list of namespaces to restore. The namespace has the format <db.collection>

Value type Example

 array ["db1.collection1", "db2.collection2"]

The pitr subsection
Controls how to make a point-in-time restore

pitr.type

SpeciDes the type of a point-in-time restore. Available options:

date - restore to a speciDc date.

latest - recover to the latest possible transaction

Value type Example

 string date

pitr.date

SpeciDes the timestamp for the restore in the datetime format YYYY-MM-DD hh:mm:ss .

Use it together with the type=date option.

Value type Example

 string YYYY-MM-DD hh:mm:ss

The backupSource subsection
Contains the conDguration options to restore from a backup made in a different cluster, namespace, or Kubernetes environment.

backupSource.type

SpeciDes the backup type. Available options: physical, logical, incremental

Value type Example

 string physical

backupSource.destination

SpeciDes the path to the backup on the storage

Value type Example

 string s3://bucket-name/backup-destination/

backupSource.s3.credentialsSecret

SpeciDes the Secrets object name with the credentials to access the storage with a backup.

Value type Example

 string my-cluster-name-backup-s3

backupSource.s3.serverSideEncryption.kmsKeyID

SpeciDes your customer-managed key stored in the AWS Key Management Service (AWS KMS). This key is used to encrypt backup data uploaded to S3 buckets
if you don’t wish to use the default server-side encryption with Amazon S3 managed keys (SSE-S3)

Value type Example

 string 1234abcd-12ab-34cd-56ef-1234567890ab

backupSource.s3.serverSideEncryption.sseAlgorithm

The encryption algorithm used to encrypt data

Value type Example

 string AES256

backupSource.s3.serverSideEncryption.sseCustomerAlgorithm

The encryption algorithm used for server-side encryption with customer-provided keys (SSE-C).

Value type Example

 string AES256

backupSource.s3.serverSideEncryption.sseCustomerKey

The customer-provided encryption key.

Value type Example

 string Y3VzdG9tZXIta2V5

backupSource.s3.region

The AWS region to use. Please note this option is mandatory for Amazon and all S3-compatible storages.

Value type Example

 string us-west-2

backupSource.s3.bucket

The Amazon S3 bucket name for backups.

Value type Example

 string

backupSource.s3.endpointUrl

The URL of the S3-compatible storage to be used (not needed for the original Amazon S3 cloud).

Value type Example

 string https://s3.us-west-2.amazonaws.com/

backupSource.s3.prefix

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

The path to the data directory in the bucket. If undeDned, backups are stored in the bucket’s root directory.

Value type Example

 string

backupSource.azure.credentialsSecret

SpeciDes the Secrets object name with the credentials to access the Azure Blob storage with a backup.

Value type Example

 string

backupSource.azure.prefix

The path to the data directory in the bucket. If undeDned, backups are stored in the bucket’s root directory.

Value type Example

 string

backupSource.s3.container

The name of the storage container. See the naming conventions

Value type Example

 string

https://docs.microsoft.com/en-us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata#container-names

11.4 Percona certified images
This page lists Percona’s certiDed Docker images that you can use with Percona Operator for MongoDB.

To Dnd images for a speciDc Operator version, see Retrieve Percona certiDed images.

Images released with the Operator version 1.21.1:

Image Digest

percona/percona-server-mongodb-operator:1.21.1 (x86_64) 155f6ee71dcfc52ff30ed4e2c4396fc3d3534c83b4794de4d90c79542fbb0e34

percona/percona-server-mongodb-operator:1.21.1 (ARM64) 88926b82a5551c36592d1c83b2e80d3c3560f0809cdb7b5d6648038123b65097

percona/percona-server-mongodb:8.0.12-4 ab8793879409788b5a19f7e332a3700520e8eeaf4b068ec8cc7d1b680f097307

percona/percona-server-mongodb:8.0.12-4 (ARM64) d367e225b57783bc2ff8451571c7568dc3b240176cf149a01cc3a7b13fb52a78

percona/percona-server-mongodb:8.0.8-3 e4580ca292f07fd7800e139121aea4b2c1dfa6aa34f3657d25a861883fd3de41

percona/percona-server-mongodb:8.0.8-3 (ARM64) 96cfee2102499aba05e63ca7862102c2b1da1cf9f4eea0cbea3793a07c183925

percona/percona-server-mongodb:8.0.4-1-multi 873b201ce3d66d97b1225c26db392c5043a73cc19ee8db6f2dc1b8efd4783bcf

percona/percona-server-mongodb:8.0.4-1-multi (ARM64) 222ccf746ad4ffdfccf41b41edaa0d318d28f663e13c9629f8dad5a5078434e5

percona/percona-server-mongodb:7.0.24-13 71d5389e91014cf6c486c4d28ee2b3f19f16eb421d9d65b36d70b9f712a43eaa

percona/percona-server-mongodb:7.0.24-13 (ARM64) 22012034c3e30029b34dda235aa14642377522ba307d742f64d7f69ed6feccf9

percona/percona-server-mongodb:7.0.18-11 0115a72f5e60d86cb4f4b7eae32118c0910e8c96831e013de12798a1771c4c91

percona/percona-server-mongodb:7.0.18-11 (ARM64) 86c17067f3e233f522612389ed2500231cbb22ce93524c476b9aa8d464d06f0b

percona/percona-server-mongodb:7.0.15-9-multi 7bffdf2e71c121e2ab37b4fa7e2f513237abdd65266da384bf8197cee1316917

percona/percona-server-mongodb:7.0.15-9-multi (ARM64) fdc4875df82572267445811445ebf517f63e509be54d1a2599fe58e1c525e1d8

percona/percona-server-mongodb:7.0.14-8-multi ed932d4e7231dcb793bf609f781226a8393aa8958b103339f4a503a8f70ed17e

percona/percona-server-mongodb:7.0.14-8-multi (ARM64) 052f84ee926ad9b5146f08a7e887820342d65b757a284c2f0ea8e937bb51cd7b

percona/percona-server-mongodb:7.0.12-7 7f00e19878bd143119772cd5468f1f0f9857dfcd2ae2f814d52ef3fa7cff6899

percona/percona-server-mongodb:6.0.25-20 0254c10fb8c249c108cd0a6e5885dfe76785e8fdd6ceb23ce98854234672e5d6

percona/percona-server-mongodb:6.0.25-20 (ARM64) 0fd4d1ca4da6377450964f225bd1d508730be9c1fca1c36c3bfcc107678d9a50

percona/percona-server-mongodb:6.0.21-18 579d2fdc617ea42ab2be8c2682955b489dbf49ab19771b7a5d9c77da4dd323e7

percona/percona-server-mongodb:6.0.21-18 (ARM64) b9d2b7e8c4a97b2d20e2aaccfbd183f65f8ccd9f2ea13939515e18e02bc64871

percona/percona-server-mongodb:6.0.19-16-multi c8ff08c4b8a96679e2daf4845873fdd4d2c48646b84db19f0c5fe02e8f3808b4

percona/percona-server-mongodb:6.0.19-16-multi (ARM64) 6908b28ced260b762cd38a642c06dd802cbef0a43ab5f22afe7b583b234ebcec

percona/percona-server-mongodb:6.0.18-15-multi d197ce16ab0eed6df25e632b92dea5ce448e549e02028f39b78f5730c2ffef36

percona/percona-server-mongodb:6.0.18-15-multi (ARM64) 7fd1d8f74f71dea6ad423e8e202a0617bdd1e8783f2b5cb071b5281685ce0adf

percona/percona-server-mongodb:6.0.16-13 1497e58e39497d8425ccd053898dc323338d6eb3f0e3c4c223f9d5a468da7931

percona/_uentbit:4.0.1 a4ab7dd10379ccf74607f6b05225c4996eeff53b628bda94e615781a1f58b779

percona/pmm-client:3.4.1 1c59d7188f8404e0294f4bfb3d2c3600107f808a023668a170a6b8036c56619b

percona/pmm-client:2.44.1-1 52a8fb5e8f912eef1ff8a117ea323c401e278908ce29928dafc23fac1db4f1e3

percona/percona-backup-mongodb:2.11.0 d09f5de92cfbc5a7a42a8cc86742a07481c98b3b42cffdc6359b3ec1f63de3a5

percona/percona-backup-mongodb:2.11.0 (ARM64) a60d095439537b982209582d428b3b39a01e31e88b2b62d2dcbd99ea4e2d9928

Image tag format
Image tags have the format:

[component_name]-[component_version]

where:

component_name is the name of the component. For example, percona-server-mongodb

component_version is the version of the component. For example, 8.0.4-1 .

Note, that PMM Client images have their own tags. They contain the version of PMM.

Find images for previous versions

https://docs.percona.com/legacy-documentation/

11.5 Versions compatibility
Versions of the cluster components and platforms tested with different Operator releases are shown below. Other version combinations may also work but have
not been tested.

Cluster components

Operator MongoDB Percona Backup for MongoDB

1.21.1 6.0 - 8.0 2.11.0

1.21.0 6.0 - 8.0 2.11.0

1.20.0 6.0 - 8.0 2.9.1

1.19.1 6.0 - 8.0 2.8.0

1.19.0 6.0 - 8.0 2.8.0

1.18.0 5.0 - 7.0 2.7.0

1.17.0 5.0 - 7.0 2.5.0

1.16.2 5.0 - 7.0 2.4.1

1.16.1 5.0 - 7.0 2.4.1

1.16.0 5.0 - 7.0 2.4.1

1.15.0 4.4 - 6.0 2.3.0

1.14.0 4.4 - 6.0 2.0.4, 2.0.5

1.13.0 4.2 - 5.0 1.8.1

1.12.0 4.2 - 5.0 1.7.0

1.11.0 4.0, 4.2, 4.4, 5.0 1.6.1

1.10.0 4.0, 4.2, 4.4, 5.0 1.6.0

1.9.0 4.0, 4.2, 4.4 1.5.0

1.8.0 3.6, 4.0, 4.2, 4.4 1.4.1

1.7.0 3.6, 4.0, 4.2, 4.4 1.4.1

1.6.0 3.6, 4.0, 4.2 1.3.4

1.5.0 3.6, 4.0, 4.2 1.3.1

1.4.0 3.6, 4.0, 4.2 1.1.0

1.3.0 3.6, 4.0 0.4.0

1.2.0 3.6, 4.0 0.4.0

1.1.0 3.6, 4.0 0.4.0

Platforms

https://www.percona.com/mongodb/software/percona-server-for-mongodb
https://www.percona.com/mongodb/software/percona-backup-for-mongodb

Operator GKE EKS Openshift AKS Minikube

1.21.1 1.31 - 1.33 1.31 - 1.34 4.16 - 4.19 1.31 - 1.33 1.37.0

1.21.0 1.31 - 1.33 1.31 - 1.34 4.16 - 4.19 1.31 - 1.33 1.37.0

1.20.0 1.30 - 1.32 1.30 - 1.32 4.14 - 4.18 1.30 - 1.32 1.35.0

1.19.1 1.28 - 1.30 1.29 - 1.31 4.14.44 - 4.17.11 1.28 - 1.31 1.34.0

1.19.0 1.28 - 1.30 1.29 - 1.31 4.14.44 - 4.17.11 1.28 - 1.31 1.34.0

1.18.0 1.28 - 1.30 1.28 - 1.31 4.13.52 - 4.17.3 1.28 - 1.31 1.34.0

1.17.0 1.27 - 1.30 1.28 - 1.30 4.13.48 - 4.16.9 1.28 - 1.30 1.33.1

1.16.2 1.26 - 1.29 1.26 - 1.29 4.12.56 - 4.15.11 1.27 - 1.29 1.33

1.16.1 1.26 - 1.29 1.26 - 1.29 4.12.56 - 4.15.11 1.27 - 1.29 1.33

1.16.0 1.26 - 1.29 1.26 - 1.29 4.12.56 - 4.15.11 1.27 - 1.29 1.33

1.15.0 1.24 - 1.28 1.24 - 1.28 4.11 - 4.13 1.25 - 1.28 1.31.2

1.14.0 1.22 - 1.25 1.22 - 1.24 4.10 - 4.12 1.23 - 1.25 1.29

1.13.0 1.21 - 1.23 1.21 - 1.23 4.10 - 4.11 1.22 - 1.24 1.26

1.12.0 1.19 - 1.22 1.19 - 1.22 4.7 - 4.10 - 1.23

1.11.0 1.19 - 1.22 1.18 - 1.22 4.7 - 4.9 - 1.22

1.10.0 1.17 - 1.21 1.16 - 1.21 4.6 - 4.8 - 1.22

1.9.0 1.17 - 1.21 1.16-1.20 4.7 - 1.20

1.8.0 1.16 - 1.20 1.19 3.11, 4.7 - 1.19

1.7.0 1.15 - 1.17 1.15 3.11, 4.5 - 1.10

1.6.0 1.15 - 1.17 1.15 3.11, 4.5 - 1.10

1.5.0 1.15 - 1.17 1.15 3.11, 4.5 - 1.18

1.4.0 1.13, 1.15 1.15 3.11, 4.2 - 1.16

1.3.0 1.11, 1.14 - 3.11, 4.1 - 1.12

1.2.0 - - 3.11, 4.0 - -

1.1.0 - - 3.11, 4.0 - -

More detailed information about the cluster components for the current version of the Operator can be found in the system requirements and in the list of
certiDed images. For previous releases of the Operator, you can check the same pages in the documentation archive .

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://docs.percona.com/legacy-documentation/

11.6 Percona Operator for MongoDB API Documentation
Percona Operator for MongoDB provides an aggregation-layer extension for the Kubernetes API . Please refer to the o`cial Kubernetes API documentation
on the API access and usage details. The following subsections describe the Percona XtraDB Cluster API provided by the Operator.

Prerequisites

1. Create the namespace name you will use, if not exist:

Trying to create an already-existing namespace will show you a self-explanatory error message. Also, you can use the defalut namespace.

In this document default namespace is used in all examples. Substitute default with your namespace name if you use a different one.

2. Prepare:

Create new Percona Server for MongoDB cluster
Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body (cluster.json):

$ kubectl create namespace my-namespace-name

Note

set correct API address
KUBE_CLUSTER=$(kubectl config view --minify -o jsonpath='{.clusters[0].name}')
API_SERVER=$(kubectl config view -o jsonpath="{.clusters[?(@.name==\"$KUBE_CLUSTER\")].cluster.server}" | sed -e
's#https://##')

create service account and get token
kubectl apply --server-side -f deploy/crd.yaml -f deploy/rbac.yaml -n default
KUBE_TOKEN=$(kubectl get secret $(kubectl get serviceaccount percona-server-mongodb-operator -o
jsonpath='{.secrets[0].name}' -n default) -o jsonpath='{.data.token}' -n default | base64 --decode)

The command to create a new Percona Server for MongoDB cluster

$ kubectl apply -f percona-server-mongodb-operator/deploy/cr.yaml

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPOST "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs" \
 -H "Content-Type: application/json" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer $KUBE_TOKEN" \
 -d "@cluster.json"

Example

{
 "apiVersion": "psmdb.percona.com/v1-5-0",

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
https://kubernetes.io/docs/reference/

 "kind": "PerconaServerMongoDB",
 "metadata": {
 "name": "my-cluster-name"
 },
 "spec": {
 "image": "percona/percona-server-mongodb:4.2.8-8",
 "imagePullPolicy": "Always",
 "allowUnsafeConfigurations": false,
 "updateStrategy": "SmartUpdate",
 "secrets": {
 "users": "my-cluster-name-secrets"
 },
 "pmm": {
 "enabled": false,
 "image": "percona/percona-server-mongodb-operator:1.5.0-pmm",
 "serverHost": "monitoring-service"
 },
 "replsets": [
 {
 "name": "rs0",
 "size": 3,
 "affinity": {
 "antiAffinityTopologyKey": "none"
 },
 "podDisruptionBudget": {
 "maxUnavailable": 1
 },
 "expose": {
 "enabled": false,
 "exposeType": "LoadBalancer"
 },
 "arbiter": {
 "enabled": false,
 "size": 1,
 "affinity": {
 "antiAffinityTopologyKey": "none"
 }
 },
 "resources": {
 "limits": null
 },
 "volumeSpec": {
 "persistentVolumeClaim": {
 "storageClassName": "standard",
 "accessModes": [
 "ReadWriteOnce"
],
 "resources": {
 "requests": {
 "storage": "3Gi"
 }
 }
 }
 }
 }
],
 "mongod": {
 "net": {
 "port": 27017,
 "hostPort": 0
 },
 "security": {
 "redactClientLogData": false,
 "enableEncryption": true,
 "encryptionKeySecret": "my-cluster-name-mongodb-encryption-key",
 "encryptionCipherMode": "AES256-CBC"
 },
 "setParameter": {
 "ttlMonitorSleepSecs": 60,
 "wiredTigerConcurrentReadTransactions": 128,
 "wiredTigerConcurrentWriteTransactions": 128
 },
 "storage": {
 "engine": "wiredTiger",
 "inMemory": {
 "engineConfig": {
 "inMemorySizeRatio": 0.9
 }
 },
 "mmapv1": {
 "nsSize": 16,
 "smallfiles": false
 },
 "wiredTiger": {
 "engineConfig": {
 "cacheSizeRatio": 0.5,
 "directoryForIndexes": false,
 "journalCompressor": "snappy"
 },
 "collectionConfig": {
 "blockCompressor": "snappy"

Inputs:

 },
 "indexConfig": {
 "prefixCompression": true
 }
 }
 },
 "operationProfiling": {
 "mode": "slowOp",
 "slowOpThresholdMs": 100,
 "rateLimit": 100
 }
 },
 "backup": {
 "enabled": true,
 "restartOnFailure": true,
 "image": "percona/percona-server-mongodb-operator:1.5.0-backup",
 "serviceAccountName": "percona-server-mongodb-operator",
 "storages": null,
 "tasks": null
 }
 }
}

Metadata:

1. Name (String, min-length: 1) : contains name of cluster

Spec:

1. secrets[users] (String, min-length: 1) : contains name of secret for the users

2. allowUnsafeConDgurations (Boolean, Default: false) : allow unsafe configurations to run

3. image (String, min-length: 1) : name of the Percona Server for MongoDB cluster image

replsets:

1. name (String, min-length: 1) : name of monogo replicaset

2. size (Integer, min-value: 1) : contains size of MongoDB replicaset

3. expose[exposeType] (Integer, min-value: 1) : type of service to expose replicaset

4. arbiter (Object) : configuration for mongo arbiter

mongod:

1. net:

a. port (Integer, min-value: 0) : contains mongod container port

b. hostPort (Integer, min-value: 0) : host port to expose mongod on

2. security:

a. enableEncryption (Boolean, Default: true) : enable encrypting mongod storage

b. encryptionKeySecret (String, min-length: 1) : name of encryption key secret

c. encryptionCipherMode (String, min-length: 1) : type of encryption cipher to use

3. setParameter (Object): configure mongod enginer paramters

4. storage:

a. engine (String, min-length: 1, default “wiredTiger”): name of mongod storage engine

b. inMemory (Object) : wiredTiger engine configuration

c. wiredTiger (Object) : wiredTiger engine configuration

pmm:

1. serverHost (String, min-length: 1) : serivce name for monitoring

2. image (String, min-length: 1) : name of pmm image

backup:

1. image (String, min-length: 1) : name of MngoDB backup docker image

2. serviceAccountName (String, min-length: 1) name of service account to use for backup

3. storages (Object) : storage configuration object for backup

Response:

Example

{
 "apiVersion":"psmdb.percona.com/v1-5-0",
 "kind":"PerconaServerMongoDB",
 "metadata":{
 "annotations":{
 "kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"psmdb.percona.com/v1-5-
0\",\"kind\":\"PerconaServerMongoDB\",\"metadata\":{\"annotations\":{},\"name\":\"my-cluster-name\",\"namespace\":\"default\"},\"spec\":
{\"allowUnsafeConfigurations\":false,\"backup\":{\"enabled\":true,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-
backup\",\"restartOnFailure\":true,\"serviceAccountName\":\"percona-server-mongodb-
operator\",\"storages\":null,\"tasks\":null},\"image\":\"percona/percona-server-mongodb:4.2.8-8\",\"imagePullPolicy\":\"Always\",\"mongod\":

{\"net\":{\"hostPort\":0,\"port\":27017},\"operationProfiling\":{\"mode\":\"slowOp\",\"rateLimit\":100,\"slowOpThresholdMs\":100},\"security\":
{\"enableEncryption\":true,\"encryptionCipherMode\":\"AES256-CBC\",\"encryptionKeySecret\":\"my-cluster-name-mongodb-encryption-
key\",\"redactClientLogData\":false},\"setParameter\":
{\"ttlMonitorSleepSecs\":60,\"wiredTigerConcurrentReadTransactions\":128,\"wiredTigerConcurrentWriteTransactions\":128},\"storage\":
{\"engine\":\"wiredTiger\",\"inMemory\":{\"engineConfig\":{\"inMemorySizeRatio\":0.9}},\"mmapv1\":
{\"nsSize\":16,\"smallfiles\":false},\"wiredTiger\":{\"collectionConfig\":{\"blockCompressor\":\"snappy\"},\"engineConfig\":
{\"cacheSizeRatio\":0.5,\"directoryForIndexes\":false,\"journalCompressor\":\"snappy\"},\"indexConfig\":{\"prefixCompression\":true}}}},\"pmm\":
{\"enabled\":false,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-pmm\",\"serverHost\":\"monitoring-service\"},\"replsets\":
[{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"arbiter\":{\"affinity\":
{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":false,\"size\":1},\"expose\":
{\"enabled\":false,\"exposeType\":\"LoadBalancer\"},\"name\":\"rs0\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":
{\"limits\":null},\"size\":3,\"volumeSpec\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":
{\"storage\":\"3Gi\"}},\"storageClassName\":\"standard\"}}}],\"secrets\":{\"users\":\"my-cluster-name-
secrets\"},\"updateStrategy\":\"SmartUpdate\"}}\n"
 },
 "creationTimestamp":"2020-07-24T14:27:58Z",
 "generation":1,
 "managedFields":[
 {
 "apiVersion":"psmdb.percona.com/v1-5-0",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:metadata":{
 "f:annotations":{
 ".":{

 },
 "f:kubectl.kubernetes.io/last-applied-configuration":{

 }
 }
 },
 "f:spec":{
 ".":{

 },
 "f:allowUnsafeConfigurations":{

 },
 "f:backup":{
 ".":{

 },
 "f:enabled":{

 },
 "f:image":{

 },
 "f:restartOnFailure":{

 },
 "f:serviceAccountName":{

 },
 "f:storages":{

 },
 "f:tasks":{

 }
 },
 "f:image":{

 },
 "f:imagePullPolicy":{

 },
 "f:mongod":{
 ".":{

 },
 "f:net":{
 ".":{

 },
 "f:hostPort":{

 },
 "f:port":{

 }
 },
 "f:operationProfiling":{
 ".":{

 },
 "f:mode":{

 },
 "f:rateLimit":{

 },
 "f:slowOpThresholdMs":{

 }
 },
 "f:security":{
 ".":{

 },
 "f:enableEncryption":{

 },
 "f:encryptionCipherMode":{

 },
 "f:encryptionKeySecret":{

 },
 "f:redactClientLogData":{

 }
 },
 "f:setParameter":{
 ".":{

 },
 "f:ttlMonitorSleepSecs":{

 },
 "f:wiredTigerConcurrentReadTransactions":{

 },
 "f:wiredTigerConcurrentWriteTransactions":{

 }
 },
 "f:storage":{
 ".":{

 },
 "f:engine":{

 },
 "f:inMemory":{
 ".":{

 },
 "f:engineConfig":{
 ".":{

 },
 "f:inMemorySizeRatio":{

 }
 }
 },
 "f:mmapv1":{
 ".":{

 },
 "f:nsSize":{

 },
 "f:smallfiles":{

 }
 },
 "f:wiredTiger":{
 ".":{

 },
 "f:collectionConfig":{
 ".":{

 },
 "f:blockCompressor":{

 }
 },
 "f:engineConfig":{
 ".":{

 },
 "f:cacheSizeRatio":{

 },
 "f:directoryForIndexes":{

 },
 "f:journalCompressor":{

 }
 },
 "f:indexConfig":{
 ".":{

 },
 "f:prefixCompression":{

 }
 }
 }
 }
 },
 "f:pmm":{
 ".":{

 },
 "f:enabled":{

 },
 "f:image":{

 },
 "f:serverHost":{

 }
 },
 "f:replsets":{

 },
 "f:secrets":{
 ".":{

 },
 "f:users":{

 }
 },
 "f:updateStrategy":{

 }
 }
 },
 "manager":"kubectl",
 "operation":"Update",
 "time":"2020-07-24T14:27:58Z"
 }
],
 "name":"my-cluster-name",
 "namespace":"default",
 "resourceVersion":"1268922",
 "selfLink":"/apis/psmdb.percona.com/v1-5-0/namespaces/default/perconaservermongodbs/my-cluster-name",
 "uid":"5207e71a-c83f-4707-b892-63aa93fb615c"
 },
 "spec":{
 "allowUnsafeConfigurations":false,
 "backup":{
 "enabled":true,
 "image":"percona/percona-server-mongodb-operator:1.5.0-backup",
 "restartOnFailure":true,
 "serviceAccountName":"percona-server-mongodb-operator",
 "storages":null,
 "tasks":null
 },
 "image":"percona/percona-server-mongodb:4.2.8-8",
 "imagePullPolicy":"Always",
 "mongod":{
 "net":{
 "hostPort":0,
 "port":27017
 },
 "operationProfiling":{
 "mode":"slowOp",
 "rateLimit":100,
 "slowOpThresholdMs":100
 },
 "security":{
 "enableEncryption":true,
 "encryptionCipherMode":"AES256-CBC",
 "encryptionKeySecret":"my-cluster-name-mongodb-encryption-key",
 "redactClientLogData":false
 },
 "setParameter":{
 "ttlMonitorSleepSecs":60,
 "wiredTigerConcurrentReadTransactions":128,
 "wiredTigerConcurrentWriteTransactions":128
 },
 "storage":{
 "engine":"wiredTiger",
 "inMemory":{

List Percona Server for MongoDB clusters
Description:

Kubectl Command:

 "engineConfig":{
 "inMemorySizeRatio":0.9
 }
 },
 "mmapv1":{
 "nsSize":16,
 "smallfiles":false
 },
 "wiredTiger":{
 "collectionConfig":{
 "blockCompressor":"snappy"
 },
 "engineConfig":{
 "cacheSizeRatio":0.5,
 "directoryForIndexes":false,
 "journalCompressor":"snappy"
 },
 "indexConfig":{
 "prefixCompression":true
 }
 }
 }
 },
 "pmm":{
 "enabled":false,
 "image":"percona/percona-server-mongodb-operator:1.5.0-pmm",
 "serverHost":"monitoring-service"
 },
 "replsets":[
 {
 "affinity":{
 "antiAffinityTopologyKey":"none"
 },
 "arbiter":{
 "affinity":{
 "antiAffinityTopologyKey":"none"
 },
 "enabled":false,
 "size":1
 },
 "expose":{
 "enabled":false,
 "exposeType":"LoadBalancer"
 },
 "name":"rs0",
 "podDisruptionBudget":{
 "maxUnavailable":1
 },
 "resources":{
 "limits":null
 },
 "size":3,
 "volumeSpec":{
 "persistentVolumeClaim":{
 "accessModes":[
 "ReadWriteOnce"
],
 "resources":{
 "requests":{
 "storage":"3Gi"
 }
 },
 "storageClassName":"standard"
 }
 }
 }
],
 "secrets":{
 "users":"my-cluster-name-secrets"
 },
 "updateStrategy":"SmartUpdate"
 }
}

Lists all Percona Server for MongoDB clusters that exist in your kubernetes cluster

$ kubectl get psmdb

URL:

Authentication:

cURL Request:

Request Body:

Response:

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs?limit=500

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XGET "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs?limit=500" \
 -H "Accept:
application/json;as=Table;v=v1;g=meta.k8s.io,application/json;as=Table;v=v1beta1;g=meta.k8s.io,application/json" \
 -H "Authorization: Bearer $KUBE_TOKEN"

None

Example

{
 "kind":"Table",
 "apiVersion":"meta.k8s.io/v1",
 "metadata":{
 "selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs",
 "resourceVersion":"1273793"
 },
 "columnDefinitions":[
 {
 "name":"Name",
 "type":"string",
 "format":"name",
 "description":"Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client
to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration
definition. Cannot be updated. More info: http://kubernetes.io/docs/user-guide/identifiers#names",
 "priority":0
 },
 {
 "name":"Status",
 "type":"string",
 "format":"",
 "description":"Custom resource definition column (in JSONPath format): .status.state",
 "priority":0
 },
 {
 "name":"Age",
 "type":"date",
 "format":"",
 "description":"Custom resource definition column (in JSONPath format): .metadata.creationTimestamp",
 "priority":0
 }
],
 "rows":[
 {
 "cells":[
 "my-cluster-name",
 "ready",
 "37m"
],
 "object":{
 "kind":"PartialObjectMetadata",
 "apiVersion":"meta.k8s.io/v1",
 "metadata":{
 "name":"my-cluster-name",
 "namespace":"default",
 "selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name",
 "uid":"5207e71a-c83f-4707-b892-63aa93fb615c",
 "resourceVersion":"1273788",
 "generation":1,
 "creationTimestamp":"2020-07-24T14:27:58Z",
 "annotations":{
 "kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"psmdb.percona.com/v1-5-
0\",\"kind\":\"PerconaServerMongoDB\",\"metadata\":{\"annotations\":{},\"name\":\"my-cluster-name\",\"namespace\":\"default\"},\"spec\":
{\"allowUnsafeConfigurations\":false,\"backup\":{\"enabled\":true,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-
backup\",\"restartOnFailure\":true,\"serviceAccountName\":\"percona-server-mongodb-
operator\",\"storages\":null,\"tasks\":null},\"image\":\"percona/percona-server-mongodb:4.2.8-8\",\"imagePullPolicy\":\"Always\",\"mongod\":
{\"net\":{\"hostPort\":0,\"port\":27017},\"operationProfiling\":{\"mode\":\"slowOp\",\"rateLimit\":100,\"slowOpThresholdMs\":100},\"security\":
{\"enableEncryption\":true,\"encryptionCipherMode\":\"AES256-CBC\",\"encryptionKeySecret\":\"my-cluster-name-mongodb-encryption-

key\",\"redactClientLogData\":false},\"setParameter\":
{\"ttlMonitorSleepSecs\":60,\"wiredTigerConcurrentReadTransactions\":128,\"wiredTigerConcurrentWriteTransactions\":128},\"storage\":
{\"engine\":\"wiredTiger\",\"inMemory\":{\"engineConfig\":{\"inMemorySizeRatio\":0.9}},\"mmapv1\":
{\"nsSize\":16,\"smallfiles\":false},\"wiredTiger\":{\"collectionConfig\":{\"blockCompressor\":\"snappy\"},\"engineConfig\":
{\"cacheSizeRatio\":0.5,\"directoryForIndexes\":false,\"journalCompressor\":\"snappy\"},\"indexConfig\":{\"prefixCompression\":true}}}},\"pmm\":
{\"enabled\":false,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-pmm\",\"serverHost\":\"monitoring-service\"},\"replsets\":
[{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"arbiter\":{\"affinity\":
{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":false,\"size\":1},\"expose\":
{\"enabled\":false,\"exposeType\":\"LoadBalancer\"},\"name\":\"rs0\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":
{\"limits\":null},\"size\":3,\"volumeSpec\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":
{\"storage\":\"3Gi\"}},\"storageClassName\":\"standard\"}}}],\"secrets\":{\"users\":\"my-cluster-name-
secrets\"},\"updateStrategy\":\"SmartUpdate\"}}\n"
 },
 "managedFields":[
 {
 "manager":"kubectl",
 "operation":"Update",
 "apiVersion":"psmdb.percona.com/v1-5-0",
 "time":"2020-07-24T14:27:58Z",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:metadata":{
 "f:annotations":{
 ".":{

 },
 "f:kubectl.kubernetes.io/last-applied-configuration":{

 }
 }
 },
 "f:spec":{
 ".":{

 },
 "f:allowUnsafeConfigurations":{

 },
 "f:backup":{
 ".":{

 },
 "f:enabled":{

 },
 "f:image":{

 },
 "f:serviceAccountName":{

 }
 },
 "f:image":{

 },
 "f:imagePullPolicy":{

 },
 "f:mongod":{
 ".":{

 },
 "f:net":{
 ".":{

 },
 "f:port":{

 }
 },
 "f:operationProfiling":{
 ".":{

 },
 "f:mode":{

 },
 "f:rateLimit":{

 },
 "f:slowOpThresholdMs":{

 }
 },
 "f:security":{
 ".":{

 },
 "f:enableEncryption":{

 },

 "f:encryptionCipherMode":{

 },
 "f:encryptionKeySecret":{

 }
 },
 "f:setParameter":{
 ".":{

 },
 "f:ttlMonitorSleepSecs":{

 },
 "f:wiredTigerConcurrentReadTransactions":{

 },
 "f:wiredTigerConcurrentWriteTransactions":{

 }
 },
 "f:storage":{
 ".":{

 },
 "f:engine":{

 },
 "f:inMemory":{
 ".":{

 },
 "f:engineConfig":{
 ".":{

 },
 "f:inMemorySizeRatio":{

 }
 }
 },
 "f:mmapv1":{
 ".":{

 },
 "f:nsSize":{

 }
 },
 "f:wiredTiger":{
 ".":{

 },
 "f:collectionConfig":{
 ".":{

 },
 "f:blockCompressor":{

 }
 },
 "f:engineConfig":{
 ".":{

 },
 "f:cacheSizeRatio":{

 },
 "f:journalCompressor":{

 }
 },
 "f:indexConfig":{
 ".":{

 },
 "f:prefixCompression":{

 }
 }
 }
 }
 },
 "f:pmm":{
 ".":{

 },
 "f:image":{

 },
 "f:serverHost":{

 }
 },
 "f:secrets":{
 ".":{

 },
 "f:users":{

 }
 },
 "f:updateStrategy":{

 }
 }
 }
 },
 {
 "manager":"percona-server-mongodb-operator",
 "operation":"Update",
 "apiVersion":"psmdb.percona.com/v1",
 "time":"2020-07-24T15:04:55Z",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:spec":{
 "f:backup":{
 "f:containerSecurityContext":{
 ".":{

 },
 "f:runAsNonRoot":{

 },
 "f:runAsUser":{

 }
 },
 "f:podSecurityContext":{
 ".":{

 },
 "f:fsGroup":{

 }
 }
 },
 "f:clusterServiceDNSSuffix":{

 },
 "f:replsets":{

 },
 "f:runUid":{

 },
 "f:secrets":{
 "f:ssl":{

 },
 "f:sslInternal":{

 }
 }
 },
 "f:status":{
 ".":{

 },
 "f:conditions":{

 },
 "f:observedGeneration":{

 },
 "f:replsets":{
 ".":{

 },
 "f:rs0":{
 ".":{

 },
 "f:ready":{

 },
 "f:size":{

 },
 "f:status":{

 }

Get status of Percona Server for MongoDB cluster
Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body:

Response:

 }
 },
 "f:state":{

 }
 }
 }
 }
]
 }
 }
 }
]
}

Gets all information about specified Percona Server for MongoDB cluster

$ kubectl get psmdb/my-cluster-name -o json

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XGET "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer $KUBE_TOKEN"

None

Example

{
 "apiVersion":"psmdb.percona.com/v1",
 "kind":"PerconaServerMongoDB",
 "metadata":{
 "annotations":{
 "kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"psmdb.percona.com/v1-5-
0\",\"kind\":\"PerconaServerMongoDB\",\"metadata\":{\"annotations\":{},\"name\":\"my-cluster-name\",\"namespace\":\"default\"},\"spec\":
{\"allowUnsafeConfigurations\":false,\"backup\":{\"enabled\":true,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-
backup\",\"restartOnFailure\":true,\"serviceAccountName\":\"percona-server-mongodb-
operator\",\"storages\":null,\"tasks\":null},\"image\":\"percona/percona-server-mongodb:4.2.8-8\",\"imagePullPolicy\":\"Always\",\"mongod\":
{\"net\":{\"hostPort\":0,\"port\":27017},\"operationProfiling\":{\"mode\":\"slowOp\",\"rateLimit\":100,\"slowOpThresholdMs\":100},\"security\":
{\"enableEncryption\":true,\"encryptionCipherMode\":\"AES256-CBC\",\"encryptionKeySecret\":\"my-cluster-name-mongodb-encryption-
key\",\"redactClientLogData\":false},\"setParameter\":
{\"ttlMonitorSleepSecs\":60,\"wiredTigerConcurrentReadTransactions\":128,\"wiredTigerConcurrentWriteTransactions\":128},\"storage\":
{\"engine\":\"wiredTiger\",\"inMemory\":{\"engineConfig\":{\"inMemorySizeRatio\":0.9}},\"mmapv1\":
{\"nsSize\":16,\"smallfiles\":false},\"wiredTiger\":{\"collectionConfig\":{\"blockCompressor\":\"snappy\"},\"engineConfig\":
{\"cacheSizeRatio\":0.5,\"directoryForIndexes\":false,\"journalCompressor\":\"snappy\"},\"indexConfig\":{\"prefixCompression\":true}}}},\"pmm\":
{\"enabled\":false,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-pmm\",\"serverHost\":\"monitoring-service\"},\"replsets\":
[{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"arbiter\":{\"affinity\":
{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":false,\"size\":1},\"expose\":
{\"enabled\":false,\"exposeType\":\"LoadBalancer\"},\"name\":\"rs0\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":
{\"limits\":null},\"size\":3,\"volumeSpec\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":
{\"storage\":\"3Gi\"}},\"storageClassName\":\"standard\"}}}],\"secrets\":{\"users\":\"my-cluster-name-
secrets\"},\"updateStrategy\":\"SmartUpdate\"}}\n"
 },
 "creationTimestamp":"2020-07-24T14:27:58Z",

 "generation":1,
 "managedFields":[
 {
 "apiVersion":"psmdb.percona.com/v1-5-0",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:metadata":{
 "f:annotations":{
 ".":{

 },
 "f:kubectl.kubernetes.io/last-applied-configuration":{

 }
 }
 },
 "f:spec":{
 ".":{

 },
 "f:allowUnsafeConfigurations":{

 },
 "f:backup":{
 ".":{

 },
 "f:enabled":{

 },
 "f:image":{

 },
 "f:serviceAccountName":{

 }
 },
 "f:image":{

 },
 "f:imagePullPolicy":{

 },
 "f:mongod":{
 ".":{

 },
 "f:net":{
 ".":{

 },
 "f:port":{

 }
 },
 "f:operationProfiling":{
 ".":{

 },
 "f:mode":{

 },
 "f:rateLimit":{

 },
 "f:slowOpThresholdMs":{

 }
 },
 "f:security":{
 ".":{

 },
 "f:enableEncryption":{

 },
 "f:encryptionCipherMode":{

 },
 "f:encryptionKeySecret":{

 }
 },
 "f:setParameter":{
 ".":{

 },
 "f:ttlMonitorSleepSecs":{

 },
 "f:wiredTigerConcurrentReadTransactions":{

 },
 "f:wiredTigerConcurrentWriteTransactions":{

 }
 },
 "f:storage":{
 ".":{

 },
 "f:engine":{

 },
 "f:inMemory":{
 ".":{

 },
 "f:engineConfig":{
 ".":{

 },
 "f:inMemorySizeRatio":{

 }
 }
 },
 "f:mmapv1":{
 ".":{

 },
 "f:nsSize":{

 }
 },
 "f:wiredTiger":{
 ".":{

 },
 "f:collectionConfig":{
 ".":{

 },
 "f:blockCompressor":{

 }
 },
 "f:engineConfig":{
 ".":{

 },
 "f:cacheSizeRatio":{

 },
 "f:journalCompressor":{

 }
 },
 "f:indexConfig":{
 ".":{

 },
 "f:prefixCompression":{

 }
 }
 }
 }
 },
 "f:pmm":{
 ".":{

 },
 "f:image":{

 },
 "f:serverHost":{

 }
 },
 "f:secrets":{
 ".":{

 },
 "f:users":{

 }
 },
 "f:updateStrategy":{

 }
 }

 },
 "manager":"kubectl",
 "operation":"Update",
 "time":"2020-07-24T14:27:58Z"
 },
 {
 "apiVersion":"psmdb.percona.com/v1",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:spec":{
 "f:backup":{
 "f:containerSecurityContext":{
 ".":{

 },
 "f:runAsNonRoot":{

 },
 "f:runAsUser":{

 }
 },
 "f:podSecurityContext":{
 ".":{

 },
 "f:fsGroup":{

 }
 }
 },
 "f:clusterServiceDNSSuffix":{

 },
 "f:replsets":{

 },
 "f:runUid":{

 },
 "f:secrets":{
 "f:ssl":{

 },
 "f:sslInternal":{

 }
 }
 },
 "f:status":{
 ".":{

 },
 "f:conditions":{

 },
 "f:observedGeneration":{

 },
 "f:replsets":{
 ".":{

 },
 "f:rs0":{
 ".":{

 },
 "f:ready":{

 },
 "f:size":{

 },
 "f:status":{

 }
 }
 },
 "f:state":{

 }
 }
 },
 "manager":"percona-server-mongodb-operator",
 "operation":"Update",
 "time":"2020-07-24T15:09:40Z"
 }
],
 "name":"my-cluster-name",
 "namespace":"default",
 "resourceVersion":"1274523",

 "selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name",
 "uid":"5207e71a-c83f-4707-b892-63aa93fb615c"
 },
 "spec":{
 "allowUnsafeConfigurations":false,
 "backup":{
 "enabled":true,
 "image":"percona/percona-server-mongodb-operator:1.5.0-backup",
 "restartOnFailure":true,
 "serviceAccountName":"percona-server-mongodb-operator",
 "storages":null,
 "tasks":null
 },
 "image":"percona/percona-server-mongodb:4.2.8-8",
 "imagePullPolicy":"Always",
 "mongod":{
 "net":{
 "hostPort":0,
 "port":27017
 },
 "operationProfiling":{
 "mode":"slowOp",
 "rateLimit":100,
 "slowOpThresholdMs":100
 },
 "security":{
 "enableEncryption":true,
 "encryptionCipherMode":"AES256-CBC",
 "encryptionKeySecret":"my-cluster-name-mongodb-encryption-key",
 "redactClientLogData":false
 },
 "setParameter":{
 "ttlMonitorSleepSecs":60,
 "wiredTigerConcurrentReadTransactions":128,
 "wiredTigerConcurrentWriteTransactions":128
 },
 "storage":{
 "engine":"wiredTiger",
 "inMemory":{
 "engineConfig":{
 "inMemorySizeRatio":0.9
 }
 },
 "mmapv1":{
 "nsSize":16,
 "smallfiles":false
 },
 "wiredTiger":{
 "collectionConfig":{
 "blockCompressor":"snappy"
 },
 "engineConfig":{
 "cacheSizeRatio":0.5,
 "directoryForIndexes":false,
 "journalCompressor":"snappy"
 },
 "indexConfig":{
 "prefixCompression":true
 }
 }
 }
 },
 "pmm":{
 "enabled":false,
 "image":"percona/percona-server-mongodb-operator:1.5.0-pmm",
 "serverHost":"monitoring-service"
 },
 "replsets":[
 {
 "affinity":{
 "antiAffinityTopologyKey":"none"
 },
 "arbiter":{
 "affinity":{
 "antiAffinityTopologyKey":"none"
 },
 "enabled":false,
 "size":1
 },
 "expose":{
 "enabled":false,
 "exposeType":"LoadBalancer"
 },
 "name":"rs0",
 "podDisruptionBudget":{
 "maxUnavailable":1
 },
 "resources":{
 "limits":null
 },
 "size":3,

 "volumeSpec":{
 "persistentVolumeClaim":{
 "accessModes":[
 "ReadWriteOnce"
],
 "resources":{
 "requests":{
 "storage":"3Gi"
 }
 },
 "storageClassName":"standard"
 }
 }
 }
],
 "secrets":{
 "users":"my-cluster-name-secrets"
 },
 "updateStrategy":"SmartUpdate"
 },
 "status":{
 "conditions":[
 {
 "lastTransitionTime":"2020-07-24T14:28:03Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:28:39Z",
 "status":"True",
 "type":"Error"
 },
 {
 "lastTransitionTime":"2020-07-24T14:28:41Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:28:41Z",
 "status":"True",
 "type":"Error"
 },
 {
 "lastTransitionTime":"2020-07-24T14:29:10Z",
 "status":"True",
 "type":"ClusterReady"
 },
 {
 "lastTransitionTime":"2020-07-24T14:49:46Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:50:00Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:52:31Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:52:43Z",
 "status":"True",
 "type":"Error"
 },
 {
 "lastTransitionTime":"2020-07-24T14:53:01Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:53:05Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:53:05Z",
 "status":"True",
 "type":"ClusterReady"
 }
],
 "observedGeneration":1,
 "replsets":{
 "rs0":{
 "ready":3,
 "size":3,
 "status":"ready"
 }
 },

Scale up/down Percona Server for MongoDB cluster
Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body:

Input:

spec:

replsets

1. size (Int or String, Defaults: 3): Specifiy the sie of the replsets cluster to scale up or down to

Response:

 "state":"ready"
 }
}

Increase or decrease the size of the Percona Server for MongoDB cluster nodes to fit the current high availability needs

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
"spec": {"replsets":{ "size": "5" }
}}'

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPATCH "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name"
\
 -H "Authorization: Bearer $KUBE_TOKEN" \
 -H "Content-Type: application/merge-patch+json"
 -H "Accept: application/json" \
 -d '{
 "spec": {"replsets":{ "size": "5" }
 }}'

Example

{
"spec": {"replsets":{ "size": "5" }
}}

Example

{
 "apiVersion":"psmdb.percona.com/v1",
 "kind":"PerconaServerMongoDB",
 "metadata":{
 "annotations":{
 "kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"psmdb.percona.com/v1-5-
0\",\"kind\":\"PerconaServerMongoDB\",\"metadata\":{\"annotations\":{},\"name\":\"my-cluster-name\",\"namespace\":\"default\"},\"spec\":
{\"allowUnsafeConfigurations\":false,\"backup\":{\"enabled\":true,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-
backup\",\"restartOnFailure\":true,\"serviceAccountName\":\"percona-server-mongodb-
operator\",\"storages\":null,\"tasks\":null},\"image\":\"percona/percona-server-mongodb:4.2.8-8\",\"imagePullPolicy\":\"Always\",\"mongod\":
{\"net\":{\"hostPort\":0,\"port\":27017},\"operationProfiling\":{\"mode\":\"slowOp\",\"rateLimit\":100,\"slowOpThresholdMs\":100},\"security\":
{\"enableEncryption\":true,\"encryptionCipherMode\":\"AES256-CBC\",\"encryptionKeySecret\":\"my-cluster-name-mongodb-encryption-
key\",\"redactClientLogData\":false},\"setParameter\":

{\"ttlMonitorSleepSecs\":60,\"wiredTigerConcurrentReadTransactions\":128,\"wiredTigerConcurrentWriteTransactions\":128},\"storage\":
{\"engine\":\"wiredTiger\",\"inMemory\":{\"engineConfig\":{\"inMemorySizeRatio\":0.9}},\"mmapv1\":
{\"nsSize\":16,\"smallfiles\":false},\"wiredTiger\":{\"collectionConfig\":{\"blockCompressor\":\"snappy\"},\"engineConfig\":
{\"cacheSizeRatio\":0.5,\"directoryForIndexes\":false,\"journalCompressor\":\"snappy\"},\"indexConfig\":{\"prefixCompression\":true}}}},\"pmm\":
{\"enabled\":false,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-pmm\",\"serverHost\":\"monitoring-service\"},\"replsets\":
[{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"arbiter\":{\"affinity\":
{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":false,\"size\":1},\"expose\":
{\"enabled\":false,\"exposeType\":\"LoadBalancer\"},\"name\":\"rs0\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":
{\"limits\":null},\"size\":3,\"volumeSpec\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":
{\"storage\":\"3Gi\"}},\"storageClassName\":\"standard\"}}}],\"secrets\":{\"users\":\"my-cluster-name-
secrets\"},\"updateStrategy\":\"SmartUpdate\"}}\n"
 },
 "creationTimestamp":"2020-07-24T14:27:58Z",
 "generation":4,
 "managedFields":[
 {
 "apiVersion":"psmdb.percona.com/v1-5-0",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:metadata":{
 "f:annotations":{
 ".":{

 },
 "f:kubectl.kubernetes.io/last-applied-configuration":{

 }
 }
 },
 "f:spec":{
 ".":{

 },
 "f:allowUnsafeConfigurations":{

 },
 "f:backup":{
 ".":{

 },
 "f:enabled":{

 },
 "f:image":{

 },
 "f:serviceAccountName":{

 }
 },
 "f:image":{

 },
 "f:imagePullPolicy":{

 },
 "f:mongod":{
 ".":{

 },
 "f:net":{
 ".":{

 },
 "f:port":{

 }
 },
 "f:operationProfiling":{
 ".":{

 },
 "f:mode":{

 },
 "f:rateLimit":{

 },
 "f:slowOpThresholdMs":{

 }
 },
 "f:security":{
 ".":{

 },
 "f:enableEncryption":{

 },
 "f:encryptionCipherMode":{

 },
 "f:encryptionKeySecret":{

 }
 },
 "f:setParameter":{
 ".":{

 },
 "f:ttlMonitorSleepSecs":{

 },
 "f:wiredTigerConcurrentReadTransactions":{

 },
 "f:wiredTigerConcurrentWriteTransactions":{

 }
 },
 "f:storage":{
 ".":{

 },
 "f:engine":{

 },
 "f:inMemory":{
 ".":{

 },
 "f:engineConfig":{
 ".":{

 },
 "f:inMemorySizeRatio":{

 }
 }
 },
 "f:mmapv1":{
 ".":{

 },
 "f:nsSize":{

 }
 },
 "f:wiredTiger":{
 ".":{

 },
 "f:collectionConfig":{
 ".":{

 },
 "f:blockCompressor":{

 }
 },
 "f:engineConfig":{
 ".":{

 },
 "f:cacheSizeRatio":{

 },
 "f:journalCompressor":{

 }
 },
 "f:indexConfig":{
 ".":{

 },
 "f:prefixCompression":{

 }
 }
 }
 }
 },
 "f:pmm":{
 ".":{

 },
 "f:image":{

 },
 "f:serverHost":{

 }

 },
 "f:secrets":{
 ".":{

 },
 "f:users":{

 }
 },
 "f:updateStrategy":{

 }
 }
 },
 "manager":"kubectl",
 "operation":"Update",
 "time":"2020-07-24T14:27:58Z"
 },
 {
 "apiVersion":"psmdb.percona.com/v1",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:spec":{
 "f:backup":{
 "f:containerSecurityContext":{
 ".":{

 },
 "f:runAsNonRoot":{

 },
 "f:runAsUser":{

 }
 },
 "f:podSecurityContext":{
 ".":{

 },
 "f:fsGroup":{

 }
 }
 },
 "f:clusterServiceDNSSuffix":{

 },
 "f:runUid":{

 },
 "f:secrets":{
 "f:ssl":{

 },
 "f:sslInternal":{

 }
 }
 },
 "f:status":{
 ".":{

 },
 "f:conditions":{

 },
 "f:observedGeneration":{

 },
 "f:replsets":{
 ".":{

 },
 "f:rs0":{
 ".":{

 },
 "f:ready":{

 },
 "f:size":{

 },
 "f:status":{

 }
 }
 },
 "f:state":{

 }

 }
 },
 "manager":"percona-server-mongodb-operator",
 "operation":"Update",
 "time":"2020-07-24T15:35:14Z"
 },
 {
 "apiVersion":"psmdb.percona.com/v1",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:spec":{
 "f:replsets":{
 ".":{

 },
 "f:size":{

 }
 }
 }
 },
 "manager":"kubectl",
 "operation":"Update",
 "time":"2020-07-24T15:43:19Z"
 }
],
 "name":"my-cluster-name",
 "namespace":"default",
 "resourceVersion":"1279009",
 "selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name",
 "uid":"5207e71a-c83f-4707-b892-63aa93fb615c"
 },
 "spec":{
 "allowUnsafeConfigurations":false,
 "backup":{
 "enabled":true,
 "image":"percona/percona-server-mongodb-operator:1.5.0-backup",
 "restartOnFailure":true,
 "serviceAccountName":"percona-server-mongodb-operator",
 "storages":null,
 "tasks":null
 },
 "image":"percona/percona-server-mongodb:4.2.8-8",
 "imagePullPolicy":"Always",
 "mongod":{
 "net":{
 "hostPort":0,
 "port":27017
 },
 "operationProfiling":{
 "mode":"slowOp",
 "rateLimit":100,
 "slowOpThresholdMs":100
 },
 "security":{
 "enableEncryption":true,
 "encryptionCipherMode":"AES256-CBC",
 "encryptionKeySecret":"my-cluster-name-mongodb-encryption-key",
 "redactClientLogData":false
 },
 "setParameter":{
 "ttlMonitorSleepSecs":60,
 "wiredTigerConcurrentReadTransactions":128,
 "wiredTigerConcurrentWriteTransactions":128
 },
 "storage":{
 "engine":"wiredTiger",
 "inMemory":{
 "engineConfig":{
 "inMemorySizeRatio":0.9
 }
 },
 "mmapv1":{
 "nsSize":16,
 "smallfiles":false
 },
 "wiredTiger":{
 "collectionConfig":{
 "blockCompressor":"snappy"
 },
 "engineConfig":{
 "cacheSizeRatio":0.5,
 "directoryForIndexes":false,
 "journalCompressor":"snappy"
 },
 "indexConfig":{
 "prefixCompression":true
 }
 }
 }
 },

 "pmm":{
 "enabled":false,
 "image":"percona/percona-server-mongodb-operator:1.5.0-pmm",
 "serverHost":"monitoring-service"
 },
 "replsets":{
 "size":"5"
 },
 "secrets":{
 "users":"my-cluster-name-secrets"
 },
 "updateStrategy":"SmartUpdate"
 },
 "status":{
 "conditions":[
 {
 "lastTransitionTime":"2020-07-24T14:28:03Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:28:39Z",
 "status":"True",
 "type":"Error"
 },
 {
 "lastTransitionTime":"2020-07-24T14:28:41Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:28:41Z",
 "status":"True",
 "type":"Error"
 },
 {
 "lastTransitionTime":"2020-07-24T14:29:10Z",
 "status":"True",
 "type":"ClusterReady"
 },
 {
 "lastTransitionTime":"2020-07-24T14:49:46Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:50:00Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:52:31Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:52:43Z",
 "status":"True",
 "type":"Error"
 },
 {
 "lastTransitionTime":"2020-07-24T14:53:01Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:53:05Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:53:05Z",
 "status":"True",
 "type":"ClusterReady"
 }
],
 "observedGeneration":1,
 "replsets":{
 "rs0":{
 "ready":3,
 "size":3,
 "status":"ready"
 }
 },
 "state":"ready"
 }
}

Update Percona Server for MongoDB cluster image
Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body:

Input:

spec:

psmdb:

1. image (String, min-length: 1) : name of the image to update for Percona Server for MongoDB

Response:

Change the image of Percona Server for MongoDB containers inside the cluster

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
"spec": {"psmdb":{ "image": "percona/percona-server-mongodb-operator:1.4.0-mongod4.2" }
}}'

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPATCH "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name"
\
 -H "Authorization: Bearer $KUBE_TOKEN" \
 -H "Accept: application/json" \
 -H "Content-Type: application/merge-patch+json"
 -d '{
 "spec": {"psmdb":{ "image": "percona/percona-server-mongodb-operator:1.4.0-mongod4.2" }
 }}'

Example

{
"spec": { "image ": "percona/percona-server-mongodb:4.2.8-8" }
}

Example

{
 "apiVersion":"psmdb.percona.com/v1",
 "kind":"PerconaServerMongoDB",
 "metadata":{
 "annotations":{
 "kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"psmdb.percona.com/v1-5-
0\",\"kind\":\"PerconaServerMongoDB\",\"metadata\":{\"annotations\":{},\"name\":\"my-cluster-name\",\"namespace\":\"default\"},\"spec\":
{\"allowUnsafeConfigurations\":false,\"backup\":{\"enabled\":true,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-
backup\",\"restartOnFailure\":true,\"serviceAccountName\":\"percona-server-mongodb-
operator\",\"storages\":null,\"tasks\":null},\"image\":\"percona/percona-server-mongodb:4.2.8-8\",\"imagePullPolicy\":\"Always\",\"mongod\":
{\"net\":{\"hostPort\":0,\"port\":27017},\"operationProfiling\":{\"mode\":\"slowOp\",\"rateLimit\":100,\"slowOpThresholdMs\":100},\"security\":
{\"enableEncryption\":true,\"encryptionCipherMode\":\"AES256-CBC\",\"encryptionKeySecret\":\"my-cluster-name-mongodb-encryption-
key\",\"redactClientLogData\":false},\"setParameter\":
{\"ttlMonitorSleepSecs\":60,\"wiredTigerConcurrentReadTransactions\":128,\"wiredTigerConcurrentWriteTransactions\":128},\"storage\":
{\"engine\":\"wiredTiger\",\"inMemory\":{\"engineConfig\":{\"inMemorySizeRatio\":0.9}},\"mmapv1\":
{\"nsSize\":16,\"smallfiles\":false},\"wiredTiger\":{\"collectionConfig\":{\"blockCompressor\":\"snappy\"},\"engineConfig\":
{\"cacheSizeRatio\":0.5,\"directoryForIndexes\":false,\"journalCompressor\":\"snappy\"},\"indexConfig\":{\"prefixCompression\":true}}}},\"pmm\":
{\"enabled\":false,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-pmm\",\"serverHost\":\"monitoring-service\"},\"replsets\":
[{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"arbiter\":{\"affinity\":
{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":false,\"size\":1},\"expose\":

{\"enabled\":false,\"exposeType\":\"LoadBalancer\"},\"name\":\"rs0\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":
{\"limits\":null},\"size\":3,\"volumeSpec\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":
{\"storage\":\"3Gi\"}},\"storageClassName\":\"standard\"}}}],\"secrets\":{\"users\":\"my-cluster-name-
secrets\"},\"updateStrategy\":\"SmartUpdate\"}}\n"
 },
 "creationTimestamp":"2020-07-24T14:27:58Z",
 "generation":5,
 "managedFields":[
 {
 "apiVersion":"psmdb.percona.com/v1-5-0",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:metadata":{
 "f:annotations":{
 ".":{

 },
 "f:kubectl.kubernetes.io/last-applied-configuration":{

 }
 }
 },
 "f:spec":{
 ".":{

 },
 "f:allowUnsafeConfigurations":{

 },
 "f:backup":{
 ".":{

 },
 "f:enabled":{

 },
 "f:image":{

 },
 "f:serviceAccountName":{

 }
 },
 "f:image":{

 },
 "f:imagePullPolicy":{

 },
 "f:mongod":{
 ".":{

 },
 "f:net":{
 ".":{

 },
 "f:port":{

 }
 },
 "f:operationProfiling":{
 ".":{

 },
 "f:mode":{

 },
 "f:rateLimit":{

 },
 "f:slowOpThresholdMs":{

 }
 },
 "f:security":{
 ".":{

 },
 "f:enableEncryption":{

 },
 "f:encryptionCipherMode":{

 },
 "f:encryptionKeySecret":{

 }
 },
 "f:setParameter":{
 ".":{

 },
 "f:ttlMonitorSleepSecs":{

 },
 "f:wiredTigerConcurrentReadTransactions":{

 },
 "f:wiredTigerConcurrentWriteTransactions":{

 }
 },
 "f:storage":{
 ".":{

 },
 "f:engine":{

 },
 "f:inMemory":{
 ".":{

 },
 "f:engineConfig":{
 ".":{

 },
 "f:inMemorySizeRatio":{

 }
 }
 },
 "f:mmapv1":{
 ".":{

 },
 "f:nsSize":{

 }
 },
 "f:wiredTiger":{
 ".":{

 },
 "f:collectionConfig":{
 ".":{

 },
 "f:blockCompressor":{

 }
 },
 "f:engineConfig":{
 ".":{

 },
 "f:cacheSizeRatio":{

 },
 "f:journalCompressor":{

 }
 },
 "f:indexConfig":{
 ".":{

 },
 "f:prefixCompression":{

 }
 }
 }
 }
 },
 "f:pmm":{
 ".":{

 },
 "f:image":{

 },
 "f:serverHost":{

 }
 },
 "f:secrets":{
 ".":{

 },
 "f:users":{

 }
 },
 "f:updateStrategy":{

 }
 }
 },
 "manager":"kubectl",
 "operation":"Update",
 "time":"2020-07-24T14:27:58Z"
 },
 {
 "apiVersion":"psmdb.percona.com/v1",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:spec":{
 "f:backup":{
 "f:containerSecurityContext":{
 ".":{

 },
 "f:runAsNonRoot":{

 },
 "f:runAsUser":{

 }
 },
 "f:podSecurityContext":{
 ".":{

 },
 "f:fsGroup":{

 }
 }
 },
 "f:clusterServiceDNSSuffix":{

 },
 "f:runUid":{

 },
 "f:secrets":{
 "f:ssl":{

 },
 "f:sslInternal":{

 }
 }
 },
 "f:status":{
 ".":{

 },
 "f:conditions":{

 },
 "f:observedGeneration":{

 },
 "f:replsets":{
 ".":{

 },
 "f:rs0":{
 ".":{

 },
 "f:ready":{

 },
 "f:size":{

 },
 "f:status":{

 }
 }
 },
 "f:state":{

 }
 }
 },
 "manager":"percona-server-mongodb-operator",
 "operation":"Update",
 "time":"2020-07-24T15:35:14Z"
 },
 {

 "apiVersion":"psmdb.percona.com/v1",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:spec":{
 "f:image ":{

 },
 "f:replsets":{
 ".":{

 },
 "f:size":{

 }
 }
 }
 },
 "manager":"kubectl",
 "operation":"Update",
 "time":"2020-07-27T12:21:39Z"
 }
],
 "name":"my-cluster-name",
 "namespace":"default",
 "resourceVersion":"1279853",
 "selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name",
 "uid":"5207e71a-c83f-4707-b892-63aa93fb615c"
 },
 "spec":{
 "allowUnsafeConfigurations":false,
 "backup":{
 "enabled":true,
 "image":"percona/percona-server-mongodb-operator:1.5.0-backup",
 "restartOnFailure":true,
 "serviceAccountName":"percona-server-mongodb-operator",
 "storages":null,
 "tasks":null
 },
 "image ":"percona/percona-server-mongodb:4.2.8-8",
 "imagePullPolicy":"Always",
 "mongod":{
 "net":{
 "hostPort":0,
 "port":27017
 },
 "operationProfiling":{
 "mode":"slowOp",
 "rateLimit":100,
 "slowOpThresholdMs":100
 },
 "security":{
 "enableEncryption":true,
 "encryptionCipherMode":"AES256-CBC",
 "encryptionKeySecret":"my-cluster-name-mongodb-encryption-key",
 "redactClientLogData":false
 },
 "setParameter":{
 "ttlMonitorSleepSecs":60,
 "wiredTigerConcurrentReadTransactions":128,
 "wiredTigerConcurrentWriteTransactions":128
 },
 "storage":{
 "engine":"wiredTiger",
 "inMemory":{
 "engineConfig":{
 "inMemorySizeRatio":0.9
 }
 },
 "mmapv1":{
 "nsSize":16,
 "smallfiles":false
 },
 "wiredTiger":{
 "collectionConfig":{
 "blockCompressor":"snappy"
 },
 "engineConfig":{
 "cacheSizeRatio":0.5,
 "directoryForIndexes":false,
 "journalCompressor":"snappy"
 },
 "indexConfig":{
 "prefixCompression":true
 }
 }
 }
 },
 "pmm":{
 "enabled":false,
 "image":"percona/percona-server-mongodb-operator:1.5.0-pmm",
 "serverHost":"monitoring-service"

Backup Percona Server for MongoDB cluster
Description:

 },
 "replsets":{
 "size":"5"
 },
 "secrets":{
 "users":"my-cluster-name-secrets"
 },
 "updateStrategy":"SmartUpdate"
 },
 "status":{
 "conditions":[
 {
 "lastTransitionTime":"2020-07-24T14:28:03Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:28:39Z",
 "status":"True",
 "type":"Error"
 },
 {
 "lastTransitionTime":"2020-07-24T14:28:41Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:28:41Z",
 "status":"True",
 "type":"Error"
 },
 {
 "lastTransitionTime":"2020-07-24T14:29:10Z",
 "status":"True",
 "type":"ClusterReady"
 },
 {
 "lastTransitionTime":"2020-07-24T14:49:46Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:50:00Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:52:31Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:52:43Z",
 "status":"True",
 "type":"Error"
 },
 {
 "lastTransitionTime":"2020-07-24T14:53:01Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:53:05Z",
 "status":"True",
 "type":"ClusterInitializing"
 },
 {
 "lastTransitionTime":"2020-07-24T14:53:05Z",
 "status":"True",
 "type":"ClusterReady"
 }
],
 "observedGeneration":1,
 "replsets":{
 "rs0":{
 "ready":3,
 "size":3,
 "status":"ready"
 }
 },
 "state":"ready"
 }
}

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body (backup.json):

Input:

1. metadata:

name(String, min-length:1) : name of backup to create

1. spec:

Response:

Takes a backup of the Percona Server for MongoDB cluster containers data to be able to recover from disasters or make a roll-
back later

$ kubectl apply -f percona-server-mongodb-operator/deploy/backup/backup.yaml

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbbackups

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPOST "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbbackups" \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 -d "@backup.json" -H "Authorization: Bearer $KUBE_TOKEN"

Example

{
 "apiVersion":"psmdb.percona.com/v1",
 "kind":"PerconaServerMongoDBBackup",
 "metadata":{
 "name":"backup1",
 "namespace":"default"
 },
 "spec":{
 "psmdbCluster":"my-cluster-name",
 "storageName":"s3-us-west"
 }
}

1. psmdbCluster(String, min-length:1) : `name of Percona Server for MongoDB cluster`

2. storageName(String, min-length:1) : `name of storage claim to use`

Restore Percona Server for MongoDB cluster
Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Example

{
 "apiVersion":"psmdb.percona.com/v1",
 "kind":"PerconaServerMongoDBBackup",
 "metadata":{
 "annotations":{
 "kubectl.kubernetes.io/last-applied-configuration":"
{\"apiVersion\":\"psmdb.percona.com/v1\",\"kind\":\"PerconaServerMongoDBBackup\",\"metadata\":{\"annotations\":
{},\"name\":\"backup1\",\"namespace\":\"default\"},\"spec\":{\"psmdbCluster\":\"my-cluster-name\",\"storageName\":\"s3-us-west\"}}\n"
 },
 "creationTimestamp":"2020-07-27T13:45:43Z",
 "generation":1,
 "managedFields":[
 {
 "apiVersion":"psmdb.percona.com/v1",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:metadata":{
 "f:annotations":{
 ".":{

 },
 "f:kubectl.kubernetes.io/last-applied-configuration":{

 }
 }
 },
 "f:spec":{
 ".":{

 },
 "f:psmdbCluster":{

 },
 "f:storageName":{

 }
 }
 },
 "manager":"kubectl",
 "operation":"Update",
 "time":"2020-07-27T13:45:43Z"
 }
],
 "name":"backup1",
 "namespace":"default",
 "resourceVersion":"1290243",
 "selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbbackups/backup1",
 "uid":"e695d1c7-898e-44b0-b356-537284f6c046"
 },
 "spec":{
 "psmdbCluster":"my-cluster-name",
 "storageName":"s3-us-west"
 }
}

Restores Percona Server for MongoDB cluster data to an earlier version to recover from a problem or to make a roll-back

$ kubectl apply -f percona-server-mongodb-operator/deploy/backup/restore.yaml

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbrestores

Authorization: Bearer $KUBE_TOKEN

Request Body (restore.json):

Input:

1. metadata:

name(String, min-length:1): name of restore to create

1. spec:

Response:

$ curl -k -v -XPOST "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbrestores" \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 -d "@restore.json" \
 -H "Authorization: Bearer $KUBE_TOKEN"

Example

{
 "apiVersion":"psmdb.percona.com/v1",
 "kind":"PerconaServerMongoDBRestore",
 "metadata":{
 "name":"restore1",
 "namespace":"default"
 },
 "spec":{
 "backupName":"backup1",
 "clusterName":"my-cluster-name"
 }
}

1. clusterName(String, min-length:1) : `name of Percona Server for MongoDB cluster`

2. backupName(String, min-length:1) : `name of backup to restore from`

Example

{
 "apiVersion":"psmdb.percona.com/v1",
 "kind":"PerconaServerMongoDBRestore",
 "metadata":{
 "annotations":{
 "kubectl.kubernetes.io/last-applied-configuration":"
{\"apiVersion\":\"psmdb.percona.com/v1\",\"kind\":\"PerconaServerMongoDBRestore\",\"metadata\":{\"annotations\":
{},\"name\":\"restore1\",\"namespace\":\"default\"},\"spec\":{\"backupName\":\"backup1\",\"clusterName\":\"my-cluster-name\"}}\n"
 },
 "creationTimestamp":"2020-07-27T13:52:56Z",
 "generation":1,
 "managedFields":[
 {
 "apiVersion":"psmdb.percona.com/v1",
 "fieldsType":"FieldsV1",
 "fieldsV1":{
 "f:metadata":{
 "f:annotations":{
 ".":{

 },
 "f:kubectl.kubernetes.io/last-applied-configuration":{

 }
 }
 },
 "f:spec":{
 ".":{

 },
 "f:backupName":{

 },
 "f:clusterName":{

 }
 }
 },
 "manager":"kubectl",
 "operation":"Update",
 "time":"2020-07-27T13:52:56Z"
 }
],
 "name":"restore1",
 "namespace":"default",
 "resourceVersion":"1291198",
 "selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbrestores/restore1",
 "uid":"17e982fe-ac41-47f4-afba-fea380b0c76e"
 },
 "spec":{
 "backupName":"backup1",
 "clusterName":"my-cluster-name"
 }
}

11.7 Frequently Asked Questions

Why do we need to follow “the Kubernetes way” when Kubernetes was never intended to
run databases?
As it is well known, the Kubernetes approach is targeted at stateless applications but provides ways to store state (in Persistent Volumes, etc.) if the application
needs it. Generally, a stateless mode of operation is supposed to provide better safety, sustainability, and scalability, it makes the already-deployed components
interchangeable. You can Dnd more about substantial beneDts brought by Kubernetes to databases in this blog post .

The architecture of state-centric applications (like databases) should be composed in a right way to avoid crashes, data loss, or data inconsistencies during
hardware failure. Percona Operator for MongoDB provides out-of-the-box functionality to automate provisioning and management of highly available MongoDB
database clusters on Kubernetes.

How can I contact the developers?
The best place to discuss Percona Operator for MongoDB with developers and other community members is the community forum .

If you would like to report a bug, use the Percona Operator for MongoDB project in JIRA .

What is the difference between the Operator quickstart and advanced installation ways?
As you have noticed, the installation section of docs contains both quickstart and advanced installation guides.

The quickstart guide is simpler. It has fewer installation steps in favor of predeDned default choices. Particularly, in advanced installation guides, you separately
apply the Custom Resource DeDnition and Role-based Access Control conDguration Dles with possible edits in them. At the same time, quickstart guides rely on
the all-inclusive bundle conDguration.

At another point, quickstart guides are related to speciDc platforms you are going to use (Minikube, Google Kubernetes Engine, etc.) and therefore include some
additional steps needed for these platforms.

Generally, rely on the quickstart guide if you are a beginner user of the speciDc platform and/or you are new to the Percona Operator for MongoDB as a whole.

Which versions of MongoDB does the Operator support?
Percona Operator for MongoDB works with all active major versions of Percona Server for MongoDB. The exact version is determined by the Docker image in
use.

The Operator uses Percona-certiDed Docker images, which you can Dnd here. For example, Percona Server for MongoDB 8.0 is supported with the following
recommended version: 8.0.12-4.

Check the Percona Server for MongoDB release notes for more details on the exact version of the latest major version. Use the version switcher to check
other major versions.

How can I add custom sidecar containers to my cluster?
The Operator allows you to deploy additional containers to the Pod. Such containers are called sidecar containers.

You can use sidecar containers to run debugging tools, some speciDc monitoring solutions, etc. Add such sidecar container to the deploy/cr.yaml
conDguration Dle, specifying its name and image, and possibly a command to run:

You can add sidecars subsection to replsets , sharding.configsvrReplSet , and sharding.mongos sections.

spec:
 replsets:
 - name: rs0

 sidecars:
 - image: busybox
 command: ["/bin/sh"]
 args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
 name: rs-sidecar-1

https://www.percona.com/blog/2020/10/08/the-criticality-of-a-kubernetes-operator-for-databases/
https://forums.percona.com/categories/kubernetes-operator-percona-server-mongodb
https://jira.percona.com/projects/K8SPSMDB
https://docs.percona.com/percona-server-for-mongodb/latest/release_notes/index.html

Custom sidecar containers can easily access other components of your cluster . Therefore they should be used carefully and by experienced users only.

Find more information on sidecar containers in the appropriate documentation page.

How to provoke the initial sync of a Pod?
There are certain situations where it might be necessary to delete all MongoDB instance data to force the resync. For example, there may be the following
reasons:

rebuilding the node to defragment the database,

recreating the member failing to sync due to some bug.

In the case of a “regular” MongoDB, wiping the dbpath would trigger such resync. In the case of a MongoDB cluster controlled by the Operator, you will need to
do the following steps:

1. Find out the names of the Persistent Volume Claim and Pod you are going to delete (use kubectl get pvc command for PVC and kubectl get pod one
for Pods).

2. Delete the appropriate PVC and Pod. For example, wiping out the my-cluster-name-rs0-2 Pod should look as follows:

The Operator will automatically recreate the needed Pod and PVC after deletion.

Note

$ kubectl delete pod/my-cluster-name-rs0-2 pvc/mongod-data-my-cluster-name-rs0-2

https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication

11.8 Copyright and licensing information

Documentation licensing
Percona Operator for MongoDB documentation is (C)2009-2023 Percona LLC and/or its a`liates and is distributed under the Creative Commons Attribution 4.0
International License .

https://creativecommons.org/licenses/by/4.0/

11.9 Trademark policy
This Trademark Policy is to ensure that users of Percona-branded products or services know that what they receive has really been developed, approved,
tested and maintained by Percona. Trademarks help to prevent confusion in the marketplace, by distinguishing one company’s or person’s products and services
from another’s.

Percona owns a number of marks, including but not limited to Percona, XtraDB, Percona XtraDB, XtraBackup, Percona XtraBackup, Percona Server, and Percona
Live, plus the distinctive visual icons and logos associated with these marks. Both the unregistered and registered marks of Percona are protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product, service, website, or other use is not permitted without
Percona’s written permission with the following three limited exceptions.

First, you may use the appropriate Percona mark when making a nominative fair use reference to a bona Dde Percona product.

Second, when Percona has released a product under a version of the GNU General Public License (“GPL”), you may use the appropriate Percona mark when
distributing a verbatim copy of that product in accordance with the terms and conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona software that has been modiDed with minor changes for the
sole purpose of allowing the software to operate on an operating system or hardware platform for which Percona has not yet released the software, provided
that those third party changes do not affect the behavior, functionality, features, design or performance of the software. Users who acquire this Percona-branded
software receive substantially exact implementations of the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example, if Percona believes that your modiDcation is beyond the
scope of the limited license granted in this Policy or that your use of the Percona mark is detrimental to Percona, Percona will revoke this authorization. Upon
revocation, you must immediately cease using the applicable Percona mark. If you do not immediately cease using the Percona mark upon revocation, Percona
may take action to protect its rights and interests in the Percona mark. Percona does not grant any license to use any Percona mark for any other modiDed
versions of Percona software; such use will require our prior written permission.

Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to truncate, modify or otherwise use any Percona mark as part of
your own brand. For example, if XYZ creates a modiDed version of the Percona Server, XYZ may not brand that modiDcation as “XYZ Percona Server” or “Percona
XYZ Server”, even if that modiDcation otherwise complies with the third exception noted above.

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy, as amended from time to time. For instance, any mention of
Percona trademarks should include the full trademarked name, with proper spelling and capitalization, along with attribution of ownership to Percona Inc. For
example, the full proper name for XtraBackup is Percona XtraBackup. However, it is acceptable to omit the word “Percona” for brevity on the second and
subsequent uses, where such omission does not cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy, please contact trademarks@percona.com for assistance and we
will do our very best to be helpful.

https://www.percona.com/trademark-policy
mailto:trademarks@percona.com

12 Release notes

12.1 Percona Operator for MongoDB Release Notes

Percona Operator for MongoDB 1.21.0 (2025-10-20)

Percona Operator for MongoDB 1.20.1 (2025-06-04)

Percona Operator for MongoDB 1.20.0 (2025-05-19)

Percona Operator for MongoDB 1.19.1 (2025-02-20)

Percona Operator for MongoDB 1.19.0 (2025-01-21)

Percona Operator for MongoDB 1.18.0 (2024-11-14)

Percona Operator for MongoDB 1.17.0 (2024-09-09)

Percona Operator for MongoDB 1.16.2 (2024-07-23)

Percona Operator for MongoDB 1.16.1 (2024-06-24)

Percona Operator for MongoDB 1.16.0 (2024-05-24)

Percona Operator for MongoDB 1.15.0 (2023-10-09)

Percona Operator for MongoDB 1.14.0 (2023-03-13)

Percona Operator for MongoDB 1.13.0 (2022-09-08)

Percona Operator for MongoDB 1.12.0 (2022-05-05)

Percona Distribution for MongoDB Operator 1.11.0 (2021-12-21)

Percona Distribution for MongoDB Operator 1.10.0 (2021-09-30)

Percona Distribution for MongoDB Operator 1.9.0 (2021-07-29)

Percona Kubernetes Operator for Percona Server for MongoDB 1.8.0 (2021-05-06)

Percona Kubernetes Operator for Percona Server for MongoDB 1.7.0 (2021-03-08)

Percona Kubernetes Operator for Percona Server for MongoDB 1.6.0 (2020-12-22)

Percona Kubernetes Operator for Percona Server for MongoDB 1.5.0 (2020-09-07)

Percona Kubernetes Operator for Percona Server for MongoDB 1.4.0 (2020-03-31)

Percona Kubernetes Operator for Percona Server for MongoDB 1.3.0 (2019-12-11)

Percona Kubernetes Operator for Percona Server for MongoDB 1.2.0 (2019-09-20)

Percona Kubernetes Operator for Percona Server for MongoDB 1.1.0 (2019-07-15)

Percona Kubernetes Operator for Percona Server for MongoDB 1.0.0 (2019-05-29)

Percona Operator for MongoDB 1.21.1 (2025-10-30)

Get started with the Operator

Release Highlights
This release resolves the MongoDB connection leak issue that occurred during PBM operations. It also addresses issues with the Operator’s retrieval and display
of the PBM version.

Changelog

Fixed bugs

K8SPSMDB-1504 - Fixed connection leaks issue during PBM operations and the Operator crashing with out-of-memory error by properly closing connections
after the PBM operation is complete.

K8SPSMDB-1506 - Fixed an issue with the Operator not being able to get PBM version due to the change of log where latest PBM versions print the version.
The Operator now combines both stderr and stdout to correctly retrieve the PBM version.

Supported software
The Operator was developed and tested with the following software:

Percona Server for MongoDB 6.0.25-20, 7.0.24-13, and 8.0.12-4

Percona Backup for MongoDB 2.11.0

PMM Client: 2.44.1

PMM3 Client: 3.4.1

cert-manager: 1.18.2

LogCollector based on _uent-bit 4.0.1

Other options may also work but have not been tested.

Supported platforms
Percona Operators are designed for compatibility with all CNCF-certiDed Kubernetes distributions. Our release process includes targeted testing and
validation on major cloud provider platforms and OpenShift, as detailed below:

Google Kubernetes Engine (GKE) 1.31-1.33

Amazon Elastic Container Service for Kubernetes (EKS) 1.31-1.34

OpenShift Container Platform 4.16 - 4.19

Azure Kubernetes Service (AKS) 1.31-1.33

Minikube 1.37.0 based on Kubernetes 1.34.0

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

Percona certified images
Find Percona’s certiDed Docker images that you can use with the Percona Operator for MongoDB in the following table:

Image Digest

percona/percona-server-mongodb-operator:1.21.1 (x86_64) 155f6ee71dcfc52ff30ed4e2c4396fc3d3534c83b4794de4d90c79542fbb0e34

percona/percona-server-mongodb-operator:1.21.1 (ARM64) 88926b82a5551c36592d1c83b2e80d3c3560f0809cdb7b5d6648038123b65097

https://perconadev.atlassian.net/browse/K8SPSMDB-1504
https://perconadev.atlassian.net/browse/K8SPSMDB-1506
https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

percona/percona-server-mongodb:8.0.12-4 ab8793879409788b5a19f7e332a3700520e8eeaf4b068ec8cc7d1b680f097307

percona/percona-server-mongodb:8.0.12-4 (ARM64) d367e225b57783bc2ff8451571c7568dc3b240176cf149a01cc3a7b13fb52a78

percona/percona-server-mongodb:8.0.8-3 e4580ca292f07fd7800e139121aea4b2c1dfa6aa34f3657d25a861883fd3de41

percona/percona-server-mongodb:8.0.8-3 (ARM64) 96cfee2102499aba05e63ca7862102c2b1da1cf9f4eea0cbea3793a07c183925

percona/percona-server-mongodb:8.0.4-1-multi 873b201ce3d66d97b1225c26db392c5043a73cc19ee8db6f2dc1b8efd4783bcf

percona/percona-server-mongodb:8.0.4-1-multi (ARM64) 222ccf746ad4ffdfccf41b41edaa0d318d28f663e13c9629f8dad5a5078434e5

percona/percona-server-mongodb:7.0.24-13 71d5389e91014cf6c486c4d28ee2b3f19f16eb421d9d65b36d70b9f712a43eaa

percona/percona-server-mongodb:7.0.24-13 (ARM64) 22012034c3e30029b34dda235aa14642377522ba307d742f64d7f69ed6feccf9

percona/percona-server-mongodb:7.0.18-11 0115a72f5e60d86cb4f4b7eae32118c0910e8c96831e013de12798a1771c4c91

percona/percona-server-mongodb:7.0.18-11 (ARM64) 86c17067f3e233f522612389ed2500231cbb22ce93524c476b9aa8d464d06f0b

percona/percona-server-mongodb:7.0.15-9-multi 7bffdf2e71c121e2ab37b4fa7e2f513237abdd65266da384bf8197cee1316917

percona/percona-server-mongodb:7.0.15-9-multi (ARM64) fdc4875df82572267445811445ebf517f63e509be54d1a2599fe58e1c525e1d8

percona/percona-server-mongodb:7.0.14-8-multi ed932d4e7231dcb793bf609f781226a8393aa8958b103339f4a503a8f70ed17e

percona/percona-server-mongodb:7.0.14-8-multi (ARM64) 052f84ee926ad9b5146f08a7e887820342d65b757a284c2f0ea8e937bb51cd7b

percona/percona-server-mongodb:7.0.12-7 7f00e19878bd143119772cd5468f1f0f9857dfcd2ae2f814d52ef3fa7cff6899

percona/percona-server-mongodb:6.0.25-20 0254c10fb8c249c108cd0a6e5885dfe76785e8fdd6ceb23ce98854234672e5d6

percona/percona-server-mongodb:6.0.25-20 (ARM64) 0fd4d1ca4da6377450964f225bd1d508730be9c1fca1c36c3bfcc107678d9a50

percona/percona-server-mongodb:6.0.21-18 579d2fdc617ea42ab2be8c2682955b489dbf49ab19771b7a5d9c77da4dd323e7

percona/percona-server-mongodb:6.0.21-18 (ARM64) b9d2b7e8c4a97b2d20e2aaccfbd183f65f8ccd9f2ea13939515e18e02bc64871

percona/percona-server-mongodb:6.0.19-16-multi c8ff08c4b8a96679e2daf4845873fdd4d2c48646b84db19f0c5fe02e8f3808b4

percona/percona-server-mongodb:6.0.19-16-multi (ARM64) 6908b28ced260b762cd38a642c06dd802cbef0a43ab5f22afe7b583b234ebcec

percona/percona-server-mongodb:6.0.18-15-multi d197ce16ab0eed6df25e632b92dea5ce448e549e02028f39b78f5730c2ffef36

percona/percona-server-mongodb:6.0.18-15-multi (ARM64) 7fd1d8f74f71dea6ad423e8e202a0617bdd1e8783f2b5cb071b5281685ce0adf

percona/percona-server-mongodb:6.0.16-13 1497e58e39497d8425ccd053898dc323338d6eb3f0e3c4c223f9d5a468da7931

percona/_uentbit:4.0.1 a4ab7dd10379ccf74607f6b05225c4996eeff53b628bda94e615781a1f58b779

percona/pmm-client:3.4.1 1c59d7188f8404e0294f4bfb3d2c3600107f808a023668a170a6b8036c56619b

percona/pmm-client:2.44.1-1 52a8fb5e8f912eef1ff8a117ea323c401e278908ce29928dafc23fac1db4f1e3

percona/percona-backup-mongodb:2.11.0 d09f5de92cfbc5a7a42a8cc86742a07481c98b3b42cffdc6359b3ec1f63de3a5

percona/percona-backup-mongodb:2.11.0 (ARM64) a60d095439537b982209582d428b3b39a01e31e88b2b62d2dcbd99ea4e2d9928

Find previous version images in the documentation archive

https://docs.percona.com/legacy-documentation/

Percona Operator for MongoDB 1.21.0 (2025-10-20)

Get started with the Operator

Release Highlights

We strongly recommend that you do not upgrade to this version due to a MongoDB connection leak issue that occurs during PBM operations. Our team is actively working on a Dx and
will release an hotDx as soon as possible.

For more details, see K8SPSMDB-1504.

This release of Percona Operator for MongoDB includes the following new features and improvements:

Percona Server for MongoDB 8.0 is now the default version

For you to enjoy all features and improvements that come with the latest major version out of the box, the Operator now deploys the cluster with Percona Server
for MongoDB 8.0 by default. You can always change the version to your desired one for the installation and update. Check the list of Percona certiDed images for
the database versions available for this release. For previous Operator versions, learn how to query the Version Service and retrieve the available images from it.

PMM3 support

The Operator is natively integrated with PMM 3, enabling you to monitor the health and performance of your Percona Distribution for MongoDB deployment and
at the same time enjoy enhanced performance, new features, and improved security that PMM 3 provides.

Note that the Operator supports both PMM2 and PMM3. The decision on what PMM version is used depends on the authentication method you provide in the
Operator conDguration: PMM2 uses API keys while PMM3 uses service account tokens. If the Operator conDguration contains both authentication methods with
non-empty values, PMM3 takes the priority.

To use PMM, ensure that the PMM client image is compatible with the PMM Server version. Check Percona certiDed images for the correct client image.

For how to conDgure monitoring with PMM see the documentation.

Hidden nodes support

In addition to arbiters and non-voting nodes, you can now deploy hidden nodes in your Percona Server for MongoDB cluster. These nodes hold a full copy of the
data but remain invisible to client applications. They are good for tasks like backups and reporting, since they access the data without affecting normal tra`c.

Hidden nodes are added as voting members and can participate in primary elections. Therefore, the Operator enforces rules to ensure the number of voting
members is odd and doesn’t exceed seven, which is the maximum allowed number of voting members:

If the total number of voting members is even, the Operator converts one node to non-voting to maintain an odd number of voters. The node to convert is
typically the last Pod in the list.

If the number of voting members is odd and not more than 7, all nodes participate in elections.

If the number of voting members exceeds 7, the Operator automatically converts some nodes to non-voting to stay within MongoDB’s limit.

To inspect the current conDguration, connect to the cluster with the clusterAdmin privileges and run the rs.config().members command.

Support for Google Cloud Client library in PBM
The Operator comes with the latest PBM version 2.11.0, which includes the support of Google Cloud Client library and authentication with service account keys.

To use Google Cloud Storage for backups with service account keys, you need to do the following:

1. Create a service account key

2. Create a Secrets object with this key

3. ConDgure the storage in the Custom Resource

See the ConDgure Google Cloud Storage documentation for detailed steps.

Warning

https://perconadev.atlassian.net/browse/K8SPSMDB-1504

The conDguration of Google Cloud Storage with HMAC keys remains unchanged. However, PBM has a known issue for using HMAC keys with GCS, which was
reported in PBM-1605. The issue is in uploading large Dles (~512MB+) to the storage when the network is unstable. Such backups may be corrupted or
incomplete but they are incorrectly treated as valid backups and pose a risk of restore failures. Therefore, we recommend migrating to the native GCS
connection type with service account (JSON) keys after the upgrade.

Improve operational resilience and observability with persistent cluster-level logging for
MongoDB Pods
Debugging distributed systems just got easier. The Percona Operator for MongoDB now supports cluster-level logging, ensuring that logs from your mongod
instances are stored persistently, even across Pod restarts.

Cluster-level logging is done with Fluent Bit, running as a sidecar container within each database Pods.

Currently, logs are collected only for the mongod instances. All other logs are ephemeral, meaning they will not persist after a Pod restart. Logs are stored for 7
days and are rotated afterwards.

Learn more about cluster-level logging in the documentation

Improved backup retention for streamlined management of scheduled backups in cloud storage

A new backup retention conDguration gives you more control over how backups are managed in storage and retained in Kubernetes.

With the deleteFromStorage _ag, you can disable automatic deletion from AWS S3 or Azure Blob storage and instead rely on native cloud lifecycle policies.
This makes backup cleanup more e`cient and better aligned with _exible storage strategies.

The legacy keep option is now deprecated and mapped to the new retention block for compatibility. We encourage you to start using the
backup.tasks.retention conDguration:

Improve operational efficiency with the support for concurrent cluster reconciliation

Reconciliation is a Kubernetes mechanism to keep your cluster in sync with its desired state. Previously, the Operator ran only one reconciliation loop at a time.
This sequential processing meant that other clusters managed by the same Operator had to wait for the current reconciliation to complete before receiving
updates.

With this release, the Operator supports concurrent reconciling and can process several clusters simultaneously. You can deDne the maximum number of
concurrent reconciles as the environment variable for the Operator deployment.

This enhancement signiDcantly improves scalability and responsiveness, especially in multi-cluster environments.

Added labels to identify the version of the Operator

Custom Resource DeDnition (CRD) is compatible with the last three Operator versions. To know which Operator version is attached to it, we’ve added labels to all
Custom Resource DeDnitions. The labels help you identify the current Operator version and decide if you need to update the CRD.

To view the labels, run:

View backup size

spec:
 backup:
 tasks:
 - name: daily-s3-us-west
 enabled: true
 schedule: "0 0 ** *"
 retention:
 count: 3
 type: count
 deleteFromStorage: true
 storageName: s3-us-west
 compressionType: gzip
 compressionLevel: 6

$ kubectl get crd perconaservermongodbs.psmdb.percona.com --show-labels

https://perconadev.atlassian.net/browse/PBM-1605

You can now see the size of each backup when viewing the backup list either via the command line or from Everest or other apps integrated with the Operator.
This improvement makes it easier to monitor storage usage and manage your backups e`ciently.

Delegate PVC resizing to an external autoscaler

You can now conDgure the Operator to use an external storage autoscaler instead of its own resizing logic. This ability may be useful for organizations needing
centralized, advanced, or cross-application scaling policies.

To use an external autoscaler, set the spec.enableExternalVolumeAutoscaling option to true in the Custom Resource manifest.

Deprecation, rename and removal

The backup.schedule.keep Deld is deprecated and will be removed in future releases. We recommend using the backup.schedule.retention instead as
follows:

yaml

 schedule:

 - name: "sat-night-backup"

 schedule: "0 0 ** 6"

 retention:

 count: 3

 type: count

 deleteFromStorage: true

 storageName: s3-us-west

The S3-compatible implementation of Google Cloud Storage (GCS) with using HMAC keys is deprecated in the Operator. We encourage you to switch to using
to the native GCS connection type with service account (JSON) keys after the upgrade.

Changelog

New features

K8SPSMDB-297: Added cluster-wide logging with the Fluent Bit log collector

K8SPSMDB-1268 - Added support for PMM v3.

K8SPSMDB-723 - Added the ability to add hidden members to MongoDB replica sets for specialized purposes.

Improvements

K8SPSMDB-1072 - Added the ability to conDgure retention policy for scheduled backups

K8SPSMDB-1216 - Updated the command to describe the mongod instance role to db.hello() , which is the currently used one.

K8SPSMDB-1243 - Added the ability to pass PBM restore conDguration options to the Operator.

K8SPSMDB-1261 - Improved the test suite for physical backups to run on every supported platform individually.

K8SPSMDB-1262 - Improved the test suite for on demand backups to run on OpenShift

K8SPSMDB-1272 - The helm upgrade command now displays warnings to clarify when CRDs are not updated.

K8SPSMDB-1284 - Clearer error messages are now displayed if a Dlesystem backup deletion fails.

K8SPSMDB-1285 - CRDs now include labels that make it easy to identify their associated Operator version.

K8SPSMDB-1304 - Added labels recommended by Kubernetes to the Operator deployment object

K8SPSMDB-1318 - Added the ability to conDgure concurrent reconciles to speed up cluster reconciliation in setups where the Operator manages several
database clusters.

K8SPSMDB-1319 - Scheduled database backups now wait for the database to be healthy before starting, preventing unnecessary failures.

k8spsmdb-1339 - Added validation for the selected restore time, preventing the point-in-time restore process from starting with an invalid date or time.

K8SPSMDB-1344, K8SPSMDB-871 - Added the ability to retrieve and store the backup size

K8SPSMDB-1398 - Added the ability to conDgure the use of an external autoscaler (Thank you Terry for contribution)

K8SPSMDB-1412 - Added the support for Google Cloud Storage with authentication via service account keys.

https://perconadev.atlassian.net/browse/K8SPSMDB-297
https://perconadev.atlassian.net/browse/K8SPSMDB-1268
https://perconadev.atlassian.net/browse/K8SPSMDB-723
https://perconadev.atlassian.net/browse/K8SPSMDB-1072
https://perconadev.atlassian.net/browse/K8SPSMDB-1216
https://perconadev.atlassian.net/browse/K8SPSMDB-1243
https://perconadev.atlassian.net/browse/K8SPSMDB-1261
https://perconadev.atlassian.net/browse/K8SPSMDB-1262
https://perconadev.atlassian.net/browse/K8SPSMDB-1272
https://perconadev.atlassian.net/browse/K8SPSMDB-1284
https://perconadev.atlassian.net/browse/K8SPSMDB-1285
https://perconadev.atlassian.net/browse/K8SPSMDB-1304
https://perconadev.atlassian.net/browse/K8SPSMDB-1318
https://perconadev.atlassian.net/browse/K8SPSMDB-1319
https://perconadev.atlassian.net/browse/K8SPSMDB-1339
https://perconadev.atlassian.net/browse/K8SPSMDB-1344
https://perconadev.atlassian.net/browse/K8SPSMDB-871
https://perconadev.atlassian.net/browse/K8SPSMDB-1398
https://perconadev.atlassian.net/browse/K8SPSMDB-1412

Fixed bugs
K8SPSMDB-1154 - MongoDB clusters using the inMemory storage engine now deploy correctly (Thank you user KOS for reporting this issue).

K8SPSMDB-1292 - Fixed the issue with physical restores failing when TLS conDguration is deDned by using it to construct the correct MongoDB connection
string URL.

K8SPSMDB-1297 - Exposed the data directory for the pmm-client sidecar container to enable it to gather required metrics.

K8SPSMDB-1308 - Improved PBM restore logging to store logs for the latest restore in the /data/db/pbm-restore-logs .

K8SPSMDB-1336 - Logical backups can now be restored to a new cluster without encountering Time monotonicity violation errors or service restarts.

K8SPSMDB-1371 - Physical point-in-time recovery using the latest type no longer crashes but gracefully fails the restore process when oplog data is
unavailable.

K8SPSMDB-1400 - Resolved an issue that caused physical restores to fail on AKS and EKS environments.

K8SPSMDB-1425 - Restoring a MongoDB cluster with point-in-time recovery now succeeds even when source and target storage preDxes differ.

K8SPSMDB-1480 - Fixed an issue that caused cluster errors when scaling replica sets resulted in an invalid number of voting members.

Documentation improvements

The multi-cluster and multi-region deployment section has been improved and expanded with the information about multi-cluster deployment and its value as
well as how it works. It provides improved guidance on multi-cluster services, a step-by-step tutorial for enabling multi-cluster deployments on GKE, and
revised instructions for deploying and interconnecting sites for replication. The docs also walk you through planned switchover and controlled failover
procedures in disaster scenarios.

Updated the Scale Percona Server for MongoDB on Kubernetes topic with the information about the pvc-resize-in-progress annotation and how it works.

Updated the ConDgure backup storage with the Google Cloud Storage conDguration.

ConDguration for conDg server split horizons is now accurately documented, simplifying multi-cluster deployments and external DNS integration.

The Data-at-rest encryption topic is updated with the correct steps for using HashiCorp Vault.

New documentation is available detailing important considerations for upgrading your Kubernetes cluster before updating any Operator.

Supported software
The Operator was developed and tested with the following software:

Percona Server for MongoDB 6.0.25-20, 7.0.24-13, and 8.0.12-4.

Percona Backup for MongoDB 2.11.0.

PMM Client: 3.4.1

LogCollector based on _uent-bit 4.0.1

Other options may also work but have not been tested.

Supported platforms
Percona Operators are designed for compatibility with all CNCF-certiDed Kubernetes distributions. Our release process includes targeted testing and
validation on major cloud provider platforms and OpenShift, as detailed below:

Google Kubernetes Engine (GKE) 1.31-1.33

Amazon Elastic Container Service for Kubernetes (EKS) 1.31-1.34

OpenShift Container Platform 4.16 - 4.19

Azure Kubernetes Service (AKS) 1.31-1.33

Minikube 1.37.0 based on Kubernetes 1.34.0

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

Percona certified images

https://perconadev.atlassian.net/browse/K8SPSMDB-1154
https://perconadev.atlassian.net/browse/K8SPSMDB-1292
https://perconadev.atlassian.net/browse/K8SPSMDB-1297
https://perconadev.atlassian.net/browse/K8SPSMDB-1308
https://perconadev.atlassian.net/browse/K8SPSMDB-1336
https://perconadev.atlassian.net/browse/K8SPSMDB-1371
https://perconadev.atlassian.net/browse/K8SPSMDB-1400
https://perconadev.atlassian.net/browse/K8SPSMDB-1425
https://perconadev.atlassian.net/browse/K8SPSMDB-1480
https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

Find Percona’s certiDed Docker images that you can use with the Percona Operator for MongoDB in the following table:

Image Digest

percona/percona-server-mongodb-operator:1.21.0 791a27c0df745e1b3531b6bbdba0b4ff67c46a38df62c23bc3203bcf0563e4cb

percona/percona-server-mongodb-operator:1.21.0 (ARM64) 56bec3f64f64497bc1468ec64dc5ca44a282da4c2666e1a9d0f96a00d329f88f

percona/percona-server-mongodb:8.0.12-4 (x86_64) ab8793879409788b5a19f7e332a3700520e8eeaf4b068ec8cc7d1b680f097307

percona/percona-server-mongodb:8.0.12-4 (ARM64) d367e225b57783bc2ff8451571c7568dc3b240176cf149a01cc3a7b13fb52a78

percona/percona-server-mongodb:8.0.8-3 (x86_64) e4580ca292f07fd7800e139121aea4b2c1dfa6aa34f3657d25a861883fd3de41

percona/percona-server-mongodb:8.0.8-3 (ARM64) 96cfee2102499aba05e63ca7862102c2b1da1cf9f4eea0cbea3793a07c183925

percona/percona-server-mongodb:8.0.4-1-multi (x86_64) 873b201ce3d66d97b1225c26db392c5043a73cc19ee8db6f2dc1b8efd4783bcf

percona/percona-server-mongodb:8.0.4-1-multi (ARM64) 222ccf746ad4ffdfccf41b41edaa0d318d28f663e13c9629f8dad5a5078434e5

percona/percona-server-mongodb:7.0.24-13 (x86_64) 71d5389e91014cf6c486c4d28ee2b3f19f16eb421d9d65b36d70b9f712a43eaa

percona/percona-server-mongodb:7.0.24-13 (ARM64) 22012034c3e30029b34dda235aa14642377522ba307d742f64d7f69ed6feccf9

percona/percona-server-mongodb:7.0.18-11 (x86_64) 0115a72f5e60d86cb4f4b7eae32118c0910e8c96831e013de12798a1771c4c91

percona/percona-server-mongodb:7.0.18-11 (ARM64) 86c17067f3e233f522612389ed2500231cbb22ce93524c476b9aa8d464d06f0b

percona/percona-server-mongodb:7.0.15-9-multi (x86_64) 7bffdf2e71c121e2ab37b4fa7e2f513237abdd65266da384bf8197cee1316917

percona/percona-server-mongodb:7.0.15-9-multi (ARM64) fdc4875df82572267445811445ebf517f63e509be54d1a2599fe58e1c525e1d8

percona/percona-server-mongodb:7.0.14-8-multi (x86_64) ed932d4e7231dcb793bf609f781226a8393aa8958b103339f4a503a8f70ed17e

percona/percona-server-mongodb:7.0.14-8-multi (ARM64) 052f84ee926ad9b5146f08a7e887820342d65b757a284c2f0ea8e937bb51cd7b

percona/percona-server-mongodb:7.0.12-7 (x86_64) 7f00e19878bd143119772cd5468f1f0f9857dfcd2ae2f814d52ef3fa7cff6899

percona/percona-server-mongodb:6.0.25-20 (x86_64) 0254c10fb8c249c108cd0a6e5885dfe76785e8fdd6ceb23ce98854234672e5d6

percona/percona-server-mongodb:6.0.25-20 (ARM64) 0fd4d1ca4da6377450964f225bd1d508730be9c1fca1c36c3bfcc107678d9a50

percona/percona-server-mongodb:6.0.21-18 (x86_64) 579d2fdc617ea42ab2be8c2682955b489dbf49ab19771b7a5d9c77da4dd323e7

percona/percona-server-mongodb:6.0.21-18 (ARM64) b9d2b7e8c4a97b2d20e2aaccfbd183f65f8ccd9f2ea13939515e18e02bc64871

percona/percona-server-mongodb:6.0.19-16-multi (x86_64) c8ff08c4b8a96679e2daf4845873fdd4d2c48646b84db19f0c5fe02e8f3808b4

percona/percona-server-mongodb:6.0.19-16-multi (ARM64) 6908b28ced260b762cd38a642c06dd802cbef0a43ab5f22afe7b583b234ebcec

percona/percona-server-mongodb:6.0.18-15-multi (x86_64) d197ce16ab0eed6df25e632b92dea5ce448e549e02028f39b78f5730c2ffef36

percona/percona-server-mongodb:6.0.18-15-multi (ARM64) 7fd1d8f74f71dea6ad423e8e202a0617bdd1e8783f2b5cb071b5281685ce0adf

percona/percona-server-mongodb:6.0.16-13 1497e58e39497d8425ccd053898dc323338d6eb3f0e3c4c223f9d5a468da7931

percona/pmm-client:3.4.1 1c59d7188f8404e0294f4bfb3d2c3600107f808a023668a170a6b8036c56619b

percona/pmm-client:2.44.1-1 52a8fb5e8f912eef1ff8a117ea323c401e278908ce29928dafc23fac1db4f1e3

percona/_uentbit:4.0.1 a4ab7dd10379ccf74607f6b05225c4996eeff53b628bda94e615781a1f58b779

percona/percona-backup-mongodb:2.11.0 d09f5de92cfbc5a7a42a8cc86742a07481c98b3b42cffdc6359b3ec1f63de3a5

percona/percona-backup-mongodb:2.11.0 (ARM64) a60d095439537b982209582d428b3b39a01e31e88b2b62d2dcbd99ea4e2d9928

Find previous version images in the documentation archive

https://docs.percona.com/legacy-documentation/

Percona Operator for MongoDB 1.20.1 (2025-06-04)

Get started with the Operator

Release Highlights
This release of Percona Operator for MongoDB Dxes the failing backup that was caused by the Operator sending multiple requests to PBM. The issue was Dxed
by bypassing the cache for the backup controller and enabling direct communication with the API server for sending backup requests.

Changelog

Bugs Fixed

K8SPSMDB-1395 - Fixed the issue with failing backups due to the Operator sending multiple backup requests based on the stale status data

Supported software
The Operator was developed and tested with the following software:

Percona Server for MongoDB 8.0.8-3, 7.0.18-11, and 6.0.21-18

Percona Backup for MongoDB 2.9.1

PMM Client 2.44.1

cert-manager 1.17.2

Other options may also work but have not been tested.

Supported platforms
Percona Operators are designed for compatibility with all CNCF-certiDed Kubernetes distributions. Our release process includes targeted testing and
validation on major cloud provider platforms and OpenShift, as detailed below:

Google Kubernetes Engine (GKE) 1.30 - 1.32

Amazon Elastic Container Service for Kubernetes (EKS) 1.30 - 1.32

OpenShift Container Platform 4.14 - 4.18

Azure Kubernetes Service (AKS) 1.30 - 1.32

Minikube 1.35.0 with Kubernetes 1.32.0

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

Percona certified images
Find Percona’s certiDed Docker images that you can use with the Percona Operator for MongoDB in the following table:

Images released with the Operator version 1.20.1:

Image Digest

percona/percona-server-mongodb-operator:1.20.1 b559cdd349916d806f6b13b4ac43fdbae982298fad2088b649631a356020ee46

percona/percona-server-mongodb-operator:1.20.1 (ARM64) 5a66e497dd1650e5a1123659292fe4c615e0ab5ce7e5d8437bf2101f91b625e1

percona/pmm-client:2.44.1 8b2eaddffd626f02a2d5318ffebc0c277fe8457da6083b8cfcada9b6e6168616

percona/pmm-client:2.44.1 (ARM64) 337fecd4afdb3f6daf2caa2b341b9fe41d0418a0e4ec76980c7f29be9d08b5ea

percona/percona-backup-mongodb:2.9.1 (x86_64) 976bfbaa548eb70dd90bf0bd2dcfe40b2994d749ef644af3a0590f4856e4d7e2

https://perconadev.atlassian.net/browse/K8SPSMDB-1395
https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

percona/percona-backup-mongodb:2.9.1 (ARM64) ebc6e5c5aa3ed97991d3fd90e9201597b485ddc0eae8d7ee4311ecb785c03bf0

percona/percona-server-mongodb:8.0.8-3 (x86_64) e4580ca292f07fd7800e139121aea4b2c1dfa6aa34f3657d25a861883fd3de41

percona/percona-server-mongodb:8.0.8-3 (ARM64) 96cfee2102499aba05e63ca7862102c2b1da1cf9f4eea0cbea3793a07c183925

percona/percona-server-mongodb:8.0.4-1-multi (x86_64) 873b201ce3d66d97b1225c26db392c5043a73cc19ee8db6f2dc1b8efd4783bcf

percona/percona-server-mongodb:8.0.4-1-multi (ARM64) 222ccf746ad4ffdfccf41b41edaa0d318d28f663e13c9629f8dad5a5078434e5

percona/percona-server-mongodb:7.0.18-11 (x86_64) 0115a72f5e60d86cb4f4b7eae32118c0910e8c96831e013de12798a1771c4c91

percona/percona-server-mongodb:7.0.18-11 (ARM64) 86c17067f3e233f522612389ed2500231cbb22ce93524c476b9aa8d464d06f0b

percona/percona-server-mongodb:7.0.15-9-multi (x86_64) 7bffdf2e71c121e2ab37b4fa7e2f513237abdd65266da384bf8197cee1316917

percona/percona-server-mongodb:7.0.15-9-multi (ARM64) fdc4875df82572267445811445ebf517f63e509be54d1a2599fe58e1c525e1d8

percona/percona-server-mongodb:7.0.14-8-multi (x86_64) ed932d4e7231dcb793bf609f781226a8393aa8958b103339f4a503a8f70ed17e

percona/percona-server-mongodb:7.0.14-8-multi (ARM64) 052f84ee926ad9b5146f08a7e887820342d65b757a284c2f0ea8e937bb51cd7b

percona/percona-server-mongodb:7.0.12-7 7f00e19878bd143119772cd5468f1f0f9857dfcd2ae2f814d52ef3fa7cff6899

percona/percona-server-mongodb:6.0.21-18 (x86_64) 579d2fdc617ea42ab2be8c2682955b489dbf49ab19771b7a5d9c77da4dd323e7

percona/percona-server-mongodb:6.0.21-18 (ARM64) b9d2b7e8c4a97b2d20e2aaccfbd183f65f8ccd9f2ea13939515e18e02bc64871

percona/percona-server-mongodb:6.0.19-16-multi (x86_64) c8ff08c4b8a96679e2daf4845873fdd4d2c48646b84db19f0c5fe02e8f3808b4

percona/percona-server-mongodb:6.0.19-16-multi (ARM64) 6908b28ced260b762cd38a642c06dd802cbef0a43ab5f22afe7b583b234ebcec

percona/percona-server-mongodb:6.0.18-15-multi (x86_64) d197ce16ab0eed6df25e632b92dea5ce448e549e02028f39b78f5730c2ffef36

percona/percona-server-mongodb:6.0.18-15-multi (ARM64) 7fd1d8f74f71dea6ad423e8e202a0617bdd1e8783f2b5cb071b5281685ce0adf

percona/percona-server-mongodb:6.0.16-13 1497e58e39497d8425ccd053898dc323338d6eb3f0e3c4c223f9d5a468da7931

percona/percona-server-mongodb:6.0.15-12 f12dd271d78cf3e70088fea0c420e8c03703457d8a5959b645053546bff94dea

Find previous version images in the documentation archive

https://docs.percona.com/legacy-documentation/

Percona Operator for MongoDB 1.20.0 (2025-05-19)

Get started with the Operator

Release Highlights
This release of Percona Operator for MongoDB includes the following new features and improvements:

Point-in-time recovery from any backup storage

The Operator now natively supports multiple backup storages inheriting this feature from Percona Backup for MongoDB (PBM). This enables you to make a
point-in-time recovery from any backup stored on any storage - PBM and the Operator maintain the data consistency for you. And you no longer have to wait till
the Operator reconDgures a cluster after you select a different storage for a backup or a restore. As a result, overall performance of your backup _ow improves.

Improve RTO with the added support of incremental physical backups (tech preview)

Using incremental physical backups in the Operator, you can now back up only the changes happened since the previous backup. Since increments are smaller in
size than the whole backup, the backup completion is faster and you also save on the storage and data transfer costs. Using incremental backups and point-in-
time recovery improves your recovery time objective (RTO).

You do need the base backup to start the incremental backup chain and you must make the whole chain from the same storage. Also note that the
percona.com/delete-backup Dnalizer and the .spec.backup.tasks.[].keep option apply for the incremental base backup but are ignored for subsequent
incremental backups.

Improved monitoring for clusters in multi-region or multi-namespace deployments in PMM

Now you can deDne a custom name for your clusters deployed in different data centers. This name helps Percona Management and Monitoring (PMM) Server to
correctly recognize clusters as connected and monitor them as one deployment. Similarly, PMM Server identiDes clusters deployed with the same names in
different namespaces as separate ones and correctly displays performance metrics for you on dashboards.

To assign a custom name, deDne this conDguration in the Custom Resource manifest for your cluster:

Changelog

New Features

K8SPSMDB-1237 - Added support for incremental physical backups

K8SPSMDB-1329 - Allowed setting loadBalancerClass service type and using a custom implementation of a load balancer rather than the cloud provider
default one.

Improvements

K8SPSMDB-621 - Set PBM_MONGODB_URI env variable in PBM container to avoid deDning it for every shell session and improve setup automation (Thank you
Damiano Albani for reporting this issue)

K8SPSMDB-1219 - Improved the support of multiple storages for backups by using the Multi Storage support functionality in PBM. This enables users to
make point-in-time recovery from any storage

K8SPSMDB-1223 - Improved the MONGODB_PBM_URI connection string construction by enabling every pbm-agent to connect to local mongoDB directly

K8SPSMDB-1226 - Documented how to pass custom conDguration for PBM

K8SPSMDB-1234 - Added the ability to use non default ports 27017 for MongoDB cluster components: mongod , mongos and configsvrReplSet Pods

K8SPSMDB-1236 - Added a check for a username to be unique when deDning it via the Custom Resource manifest

K8SPSMDB-1253 - Made the SmartUpdate the default update strategy

spec:
 pmm:
 customClusterName: mongo-cluster

https://perconadev.atlassian.net/browse/K8SPSMDB-1237
https://perconadev.atlassian.net/browse/K8SPSMDB-1329
https://perconadev.atlassian.net/browse/K8SPSMDB-621
https://perconadev.atlassian.net/browse/K8SPSMDB-1219
https://perconadev.atlassian.net/browse/K8SPSMDB-1223
https://perconadev.atlassian.net/browse/K8SPSMDB-1226
https://perconadev.atlassian.net/browse/K8SPSMDB-1234
https://perconadev.atlassian.net/browse/K8SPSMDB-1236
https://perconadev.atlassian.net/browse/K8SPSMDB-1253

K8SPSMDB-1276 - Added logic to the getMongoUri function to compare the content of the existing TLS and CA certiDcate Dles with the secret data. Files are
only overwritten if the data has changed, preventing redundant writes and ensuring smoother operations during backup checks. (Thank you Anton Averianov
for reporting and contributing to this issue)

K8SPSMDB-1316 - Added the ability to deDne a custom cluster name for pmm-admin component

K8SPSMDB-1325 Added the directShardOperations role for a mongo user used for monitoring MongoDB 8 and above

K8SPSMDB-1337 Add imagePullSecrets for PMM and backup images

Bugs Fixed

K8SPSMDB-1197 - Fixed the healthcheck log rotation routine to delete log Dle created 1 day before.

K8SPSMDB-1231 - Fixed the issue with a single-node cluster to temporarily report the Error state during initial provisioning by ignoring the No mongod
containers in running state error.

K8SPSMDB-1239 - Fixed the issue with cron jobs running simultaneously

K8SPSMDB-1245 - Improved Telemetry for cluster-wide deployments to handle both an empty value and a comma-separated list of namespaces

K8SPSMDB-1256 - Fixed the issue with PBM failing with the length of read message too large error by verifying the existence of TLS Dles when
constructing the PBM_MONGODB_URI connection string URI

K8SPSMDB-1263 - Fixed the issue with the Operator losing connection to mongod pods during backup and throwing an error by retrying to connect and
proceed with the backup

K8SPSMDB-1274 - Disable balancer before logical restore to meet the PBM restore requirements

K8SPSMDB-1275 - Fixed the issue with the Operator failing when the getLastErrorModes write concern value is set for a replica set by using the data type
for a value that matches MongoDB behavior (Thank you user clrxbl for reporting and contributing to this issue)

K8SPSMDB-1294 - Fixed the API mismatch error with the multi-cluster Services (MCS) enabled in the Operator by using the
DiscoveryClient.ServerPreferredResources method to align with the kubectl behavior.

K8SPSMDB-1302 - Fixed the issue with the Operator being stuck during physical restore when the update strategy is set to SmartUpdate

K8SPSMDB-1306 - Fixed the Operator panics if a user conDgures PBM priorities without timeouts

K8SPSMDB-1347 - Fixed the issue with the Operator throwing errors when auto generating password for multiple users by properly updating the secret after a
password generation

Upgrade considerations
The added support for multiple backup storages requires specifying the main storage. If you use a single storage, it will automatically be marked as main in the
Custom Resource manifest during the upgrade. If you use multiple storages, you must deDne one of them as the main storage when you upgrade to version
1.20.0. The following command shows how to set the s3-us-west storage as the main one:

Supported software
The Operator was developed and tested with the following software:

Percona Server for MongoDB 6.0.21-18, 7.0.18-11, and 8.0.8-3.

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
 "spec": {
 "crVersion": "1.20.0",
 "image": "percona/percona-server-mongodb:7.0.18-11",
 "backup": {
 "image": "percona/percona-backup-mongodb:2.9.1",
 "storages": {
 "s3-us-west": {
 "main": true
 }
 }
 },
 "pmm": {
 "image": "percona/pmm-client:2.44.1"
 }
 }
 }'

https://perconadev.atlassian.net/browse/K8SPSMDB-1276
https://perconadev.atlassian.net/browse/K8SPSMDB-1316
https://perconadev.atlassian.net/browse/K8SPSMDB-1325
https://perconadev.atlassian.net/browse/K8SPSMDB-1337
https://perconadev.atlassian.net/browse/K8SPSMDB-1197
https://perconadev.atlassian.net/browse/K8SPSMDB-1231
https://perconadev.atlassian.net/browse/K8SPSMDB-1239
https://perconadev.atlassian.net/browse/K8SPSMDB-1245
https://perconadev.atlassian.net/browse/K8SPSMDB-1256
https://perconadev.atlassian.net/browse/K8SPSMDB-1263
https://perconadev.atlassian.net/browse/K8SPSMDB-1274
https://perconadev.atlassian.net/browse/K8SPSMDB-1275
https://perconadev.atlassian.net/browse/K8SPSMDB-1294
https://perconadev.atlassian.net/browse/K8SPSMDB-1302
https://perconadev.atlassian.net/browse/K8SPSMDB-1306
https://perconadev.atlassian.net/browse/K8SPSMDB-1347

Percona Backup for MongoDB 2.9.1.

PMM Client: 2.44.1

Other options may also work but have not been tested.

Supported platforms
Percona Operators are designed for compatibility with all CNCF-certiDed Kubernetes distributions. Our release process includes targeted testing and
validation on major cloud provider platforms and OpenShift, as detailed below:

Google Kubernetes Engine (GKE) 1.30-1.32

Amazon Elastic Container Service for Kubernetes (EKS) 1.30-1.32

OpenShift Container Platform 4.14 - 4.18

Azure Kubernetes Service (AKS) 1.30-1.32

Minikube 1.35.0 based on Kubernetes 1.32.0

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

Percona certified images
Find Percona’s certiDed Docker images that you can use with the Percona Operator for MongoDB in the following table:

Images released with the Operator version 1.20.0:

Image Digest

percona/percona-server-mongodb-operator:1.20.0 (x86_64) 01da3139b0f7f64a27f3642ca06581ea065a02891b13ce2375d61471011d6dd4

percona/percona-server-mongodb-operator:1.20.0 (ARM64) 26d885398af42d18928f51f070aff770df900eb5ddf46e3e0bc2570720089bb1

percona/pmm-client:2.44.1 8b2eaddffd626f02a2d5318ffebc0c277fe8457da6083b8cfcada9b6e6168616

percona/pmm-client:2.44.1 (ARM64) 337fecd4afdb3f6daf2caa2b341b9fe41d0418a0e4ec76980c7f29be9d08b5ea

percona/percona-backup-mongodb:2.9.1 (x86_64) 976bfbaa548eb70dd90bf0bd2dcfe40b2994d749ef644af3a0590f4856e4d7e2

percona/percona-backup-mongodb:2.9.1 (ARM64) ebc6e5c5aa3ed97991d3fd90e9201597b485ddc0eae8d7ee4311ecb785c03bf0

percona/percona-server-mongodb:8.0.8-3 (x86_64) e4580ca292f07fd7800e139121aea4b2c1dfa6aa34f3657d25a861883fd3de41

percona/percona-server-mongodb:8.0.8-3 (ARM64) 96cfee2102499aba05e63ca7862102c2b1da1cf9f4eea0cbea3793a07c183925

percona/percona-server-mongodb:8.0.4-1-multi (x86_64) 873b201ce3d66d97b1225c26db392c5043a73cc19ee8db6f2dc1b8efd4783bcf

percona/percona-server-mongodb:8.0.4-1-multi (ARM64) 222ccf746ad4ffdfccf41b41edaa0d318d28f663e13c9629f8dad5a5078434e5

percona/percona-server-mongodb:7.0.18-11 (x86_64) 0115a72f5e60d86cb4f4b7eae32118c0910e8c96831e013de12798a1771c4c91

percona/percona-server-mongodb:7.0.18-11 (ARM64) 86c17067f3e233f522612389ed2500231cbb22ce93524c476b9aa8d464d06f0b

percona/percona-server-mongodb:7.0.15-9-multi (x86_64) 7bffdf2e71c121e2ab37b4fa7e2f513237abdd65266da384bf8197cee1316917

percona/percona-server-mongodb:7.0.15-9-multi (ARM64) fdc4875df82572267445811445ebf517f63e509be54d1a2599fe58e1c525e1d8

percona/percona-server-mongodb:7.0.14-8-multi (x86_64) ed932d4e7231dcb793bf609f781226a8393aa8958b103339f4a503a8f70ed17e

percona/percona-server-mongodb:7.0.14-8-multi (ARM64) 052f84ee926ad9b5146f08a7e887820342d65b757a284c2f0ea8e937bb51cd7b

percona/percona-server-mongodb:7.0.12-7 7f00e19878bd143119772cd5468f1f0f9857dfcd2ae2f814d52ef3fa7cff6899

percona/percona-server-mongodb:6.0.21-18 (x86_64) 579d2fdc617ea42ab2be8c2682955b489dbf49ab19771b7a5d9c77da4dd323e7

https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

percona/percona-server-mongodb:6.0.21-18 (ARM64) b9d2b7e8c4a97b2d20e2aaccfbd183f65f8ccd9f2ea13939515e18e02bc64871

percona/percona-server-mongodb:6.0.19-16-multi (x86_64) c8ff08c4b8a96679e2daf4845873fdd4d2c48646b84db19f0c5fe02e8f3808b4

percona/percona-server-mongodb:6.0.19-16-multi (ARM64) 6908b28ced260b762cd38a642c06dd802cbef0a43ab5f22afe7b583b234ebcec

percona/percona-server-mongodb:6.0.18-15-multi (x86_64) d197ce16ab0eed6df25e632b92dea5ce448e549e02028f39b78f5730c2ffef36

percona/percona-server-mongodb:6.0.18-15-multi (ARM64) 7fd1d8f74f71dea6ad423e8e202a0617bdd1e8783f2b5cb071b5281685ce0adf

percona/percona-server-mongodb:6.0.16-13 1497e58e39497d8425ccd053898dc323338d6eb3f0e3c4c223f9d5a468da7931

percona/percona-server-mongodb:6.0.15-12 f12dd271d78cf3e70088fea0c420e8c03703457d8a5959b645053546bff94dea

Find previous version images in the documentation archive

https://docs.percona.com/legacy-documentation/

Percona Operator for MongoDB 1.19.1

Date

February 20, 2025

Installation

Installing Percona Operator for MongoDB

Bugs Fixed
K8SPSMDB-1274: Revert to disabling MongoDB balancer during restores to follow requirements of Percona Backup for MongoDB 2.8.0.

Known limitations
PBM-1493: For sharded MongoDB 8.0 deployments, Percona Operator for MongoDB versions 1.19.0 and 1.19.1 have a known issue causing point-in-time
recovery failures. Avoid upgrading to these Operator versions until a Dx is released in Percona Backup for MongoDB and added into the newer versions of the
Operator

Supported Platforms
The Operator was developed and tested with Percona Server for MongoDB 6.0.19-16, 7.0.15-9, and 8.0.4-1. Other options may also work but have not been
tested. The Operator also uses Percona Backup for MongoDB 2.8.0.

Percona Operators are designed for compatibility with all CNCF-certiDed Kubernetes distributions. Our release process includes targeted testing and
validation on major cloud provider platforms and OpenShift, as detailed below for Operator version 1.19.1:

Google Kubernetes Engine (GKE) 1.28-1.30

Amazon Elastic Container Service for Kubernetes (EKS) 1.29-1.31

OpenShift Container Platform 4.14.44 - 4.17.11

Azure Kubernetes Service (AKS) 1.28-1.31

Minikube 1.34.0 based on Kubernetes 1.31.0

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPSMDB-1274
https://perconadev.atlassian.net/browse/PBM-1493
https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

Percona Operator for MongoDB 1.19.0

Date

January 21, 2025

Installation

Installing Percona Operator for MongoDB

Release Highlights

Using remote file server for backups (tech preview)

The new filesystem backup storage type was added in this release in addition to already existing s3 and azure types. It allows users to mount a remote Dle
server to a local directory, and make Percona Backup for MongoDB using this directory as a storage for backups. The approach is based on common Network
File System (NFS) protocol, and should be useful in network-restricted environments without S3-compatible storage or in cases with a non-standard storage
service supporting NFS access.

To use NFS-capable remote Dle server as a backup storage, user needs to mount the remote storage as a sidecar volume in the replsets section of the
Custom Resource (and also configsvrReplSet in case of a sharded cluster):

Finally, this new storage needs to be conDgured in the same Custom Resource as a normal storage for backups:

See more in our documentation about this storage type.

Generated passwords for custom MongoDB users

A new improvement for the declarative management of custom MongoDB users brings the possibility to use automatic generation of users passwords. When
you specify a new user in deploy/cr.yaml conDguration Dle, you can omit specifying a reference to an already existing Secret with the user’s password, and the
Operator will generate it automatically:

Find more details on this automatically created Secret in our documentation.

Percona Server for MongoDB 8.0 support

replsets:
 ...
 sidecarVolumes:
 - name: backup-nfs
 nfs:
 server: "nfs-service.storage.svc.cluster.local"
 path: "/psmdb-some-name-rs0"
 ...

backup:
 ...
 storages:
 backup-nfs:
 filesystem:
 path: /mnt/nfs/
 type: filesystem
 ...
 volumeMounts:
 - mountPath: /mnt/nfs/
 name: backup-nfs

...
users:
 - name: my-user
 db: admin
 roles:
 - name: clusterAdmin
 db: admin
 - name: userAdminAnyDatabase
 db: admin

Percona Server for MongoDB 8.0 is now supported by the Operator in addition to 6.0 and 7.0 versions. The appropriate images are now included into the list of
Percona-certiDed images. See this blogpost for details about the latest MongoDB 8.0 features with the added reliability and performance improvements.

New Features
K8SPSMDB-1109: Backups can now be stored on a remote Dle server

K8SPSMDB-921: IAM Roles for Service Accounts (IRSA) allow automating access to AWS S3 buckets based on Identity Access Management with no need to
specify the S3 credentials explicitly

K8SPSMDB-1133: Manual change of Replica Set Member Priority in Percona Server MongoDB Operator is now possible with the new
replsetOverrides.MEMBER-NAME.priority Custom Resource option

K8SPSMDB-1164: Add the possibility to create users in the $external database for external authentication purposes

Improvements
K8SPSMDB-1123: Percona Server for MongoDB 8.0 is now supported

K8SPSMDB-1171: The declarative user management was enchanced with the possibility to automatically generate passwords

K8SPSMDB-1174: Telemetry was improved to to track whether the custom users and roles management, automatic volume expansion, and multi-cluster
services features are enabled

K8SPSMDB-1179: It is now possible to conDgure externalTra`cPolicy for mongod, conDgsvr and mongos instances

K8SPSMDB-1205: Backups in unmanaged clusters are now supported, removing a long-standing limitation of cross-site replication that didn’t allow backups
on replica clusters

Bugs Fixed
K8SPSMDB-1215: Fix a bug where ExternalTra`cPolicy was incorrectly set for LoadBalancer and NodePort services (Thanks to Anton Averianov for
contributing)

K8SPSMDB-675: Fix a bug where disabling sharding failed on a running cluster with enabled backups

K8SPSMDB-754: Fix a bug where some error messages had “INFO” log level and therefore were not seen in logs with the “ERROR” log level turned on

K8SPSMDB-1088: Fix a bug which caused the Operator starting two backup operations if the user patches the backup object while its state is empty or
Waiting

K8SPSMDB-1156: Fix a bug that prevented the Operator with enabled backups to recover from invalid TLS conDgurations (Thanks to KOS for reporting)

K8SPSMDB-1172: Fix a bug where backup user’s password username with special characters caused Percona Backup for MongoDB to fail

K8SPSMDB-1212: Stop disabling balancer during restores, because it is not required for Percona Backup for MongoDB 2.x

Deprecation, Rename and Removal
The psmdbCluster option from the deploy/backup/backup.yaml manifest used for on-demand backups, which was deprecated since the Operator version
1.12.0 in favor of the clusterName option, has been removed and is no longer supported.

Percona Server for MongoDB 5.0 has reached its end of life and in no longer supported by the Operator

Supported Platforms
The Operator was developed and tested with Percona Server for MongoDB 6.0.19-16, 7.0.15-9, and 8.0.4-1. Other options may also work but have not been
tested. The Operator also uses Percona Backup for MongoDB 2.8.0.

Percona Operators are designed for compatibility with all CNCF-certiDed Kubernetes distributions. Our release process includes targeted testing and
validation on major cloud provider platforms and OpenShift, as detailed below for Operator version 1.19.0:

Google Kubernetes Engine (GKE) 1.28-1.30

Amazon Elastic Container Service for Kubernetes (EKS) 1.29-1.31

OpenShift Container Platform 4.14.44 - 4.17.11

Azure Kubernetes Service (AKS) 1.28-1.31

Minikube 1.34.0 based on Kubernetes 1.31.0

https://www.percona.com/blog/percona-server-for-mongodb-8-0-most-performant-ever/
https://jira.percona.com/browse/K8SPSMDB-1109
https://jira.percona.com/browse/K8SPSMDB-921
https://jira.percona.com/browse/K8SPSMDB-1133
https://jira.percona.com/browse/K8SPSMDB-1164
https://jira.percona.com/browse/K8SPSMDB-1123
https://jira.percona.com/browse/K8SPSMDB-1171
https://jira.percona.com/browse/K8SPSMDB-1174
https://jira.percona.com/browse/K8SPSMDB-1179
https://jira.percona.com/browse/K8SPSMDB-1205
https://jira.percona.com/browse/K8SPSMDB-1215
https://jira.percona.com/browse/K8SPSMDB-675
https://jira.percona.com/browse/K8SPSMDB-754
https://jira.percona.com/browse/K8SPSMDB-1088
https://jira.percona.com/browse/K8SPSMDB-1156
https://jira.percona.com/browse/K8SPSMDB-1172
https://jira.percona.com/browse/K8SPSMDB-1212
https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

Percona Operator for MongoDB 1.18.0

Date

November 14, 2024

Installation

Installing Percona Operator for MongoDB

Release Highlights

Enhancements of the declarative user management

The declarative management of custom MongoDB users was improved compared to its initial implementation in the previous release, where the Operator did not
track and sync user-related changes in the Custom Resource and the database. Also, starting from now you can create custom MongoDB roles on various
databases just like users in the deploy/cr.yaml manifest:

See the documentation to Dnd more details about this feature.

Support for selective restores

Percona Backup for MongoDB 2.0.0 has introduced a new functionality that allows partial restores, which means selectively restoring only with the desired
subset of data. Now the Operator also supports this feature, allowing you to restore a speciDc database or a collection from a backup. You can achieve this by
using an additional selective section in the PerconaServerMongoDBRestore Custom Resource:

You can Dnd more on selective restores and their limitations in our documentation.

Splitting the replica set of the database cluster over multiple Kubernetes clusters

Recent improvements in cross-site replication made it possible to keep the replica set of the database cluster in different data centers. The Operator itself
cannot deploy MongoDB replicas to other data centers, but this still can be achieved with a number of Operator deployments, equal to the size of your replica set:
one Operator to control the replica set via cross-site replication, and at least two Operators to bootstrap the unmanaged clusters with other MongoDB replica set
instances. Splitting the replica set of the database cluster over multiple Kubernetes clusters can be useful to get a fault-tolerant system in which all replicas are
in different data centers. You can Dnd more about conDguring such a multi-datacenter MongoDB cluster and the limitations of this solution on the dedicated
documentation page.

New Features
K8SPSMDB-894: It is now possible to restore a subset of data (a speciDc database or a collection) from a backup which is useful to reduce time on restore
operations when Dxing corrupted data fragment

K8SPSMDB-1113: The new percona.com/delete-pitr-chunks Dnalizer allows the deletion of PITR log Dles from the backup storage when deleting a
cluster so that leftover data does not continue to take up space in the cloud

K8SPSMDB-1124 and K8SPSMDB-1146: Declarative user management now covers creating and managing user roles, and syncs user-related changes
between the Custom Resource and the database

K8SPSMDB-1140 and K8SPSMDB-1141: Multi-datacenter cluster deployment is now possible

Improvements

...
roles:
 - name: clusterAdmin
 db: admin
 - name: userAdminAnyDatabase
 db: admin

spec:
 selective:
 withUsersAndRoles: true
 namespaces:
 - "db.collection"

https://jira.percona.com/browse/K8SPSMDB-894
https://jira.percona.com/browse/K8SPSMDB-1113
https://jira.percona.com/browse/K8SPSMDB-1124
https://jira.percona.com/browse/K8SPSMDB-1146
https://jira.percona.com/browse/K8SPSMDB-1140
https://jira.percona.com/browse/K8SPSMDB-1141

K8SPSMDB-739: A number of Service exposure options in the replsets , sharding.configsvrReplSet , and sharding.mongos were renamed for
uniDcation with other Percona Operators

K8SPSMDB-1002: New Custom Resource options under the replsets.primaryPreferTagSelector` subsection allow providing Primary instance selection
preferences based on speciDc zone and region, which may be especially useful within the planned zone switchover process (Thanks to sergelogvinov for
contribution)

K8SPSMDB-1096: Restore logs were improved to contain pbm-agent logs in mongod containers, useful to debug failures in the backup restoration process

K8SPSMDB-1135: Split-horizon DNS for external (unmanaged) nodes is now conDgurable via the replsets.externalNodes subsection in Custom Resource

K8SPSMDB-1152: Starting from now, the Operator uses multi-architecture images of Percona Server for MongoDB and Percona Backup for MongoDB, making
it easier to deploy a cluster on ARM

K8SPSMDB-1160: The PVC resize feature introduced in previous release can now be enabled or disabled via the enableVolumeExpansion Custom Resource
option (false by default), which protects the cluster from storage resize triggered by mistake

K8SPSMDB-1132: A new secrets.keyFile Custom Resource option allows to conDgure custom name for the Secret with the MongoDB internal auth key Dle

Bugs Fixed
K8SPSMDB-912: Fix a bug where the full backup connection string including the password was visible in logs in case of the Percona Backup for MongoDB
errors

K8SPSMDB-1047: Fix a bug where the Operator was changing writeConcernMajorityJournalDefault to “true” during the replica set reconDguring, ignoring the
value set by user

K8SPSMDB-1168: Fix a bug where successful backups could obtain a failed state in case of the Operator conDgured with watchAllNamespaces: true and
having the same name for MongoDB clusters across multiple namespaces (Thanks to Markus Küffner for contribution)

K8SPSMDB-1170: Fix a bug that prevented deletion of a cluster with the active percona.com/delete-psmdb-pods-in-order Dnalizer in case of the cluster
error state (e.g. when mongo replset failed to reconcile)

K8SPSMDB-1184: Fix a bug where the Operator failed to reconcile when using the container security context with readOnlyRootFilesystem set to true
(Thanks to applejag for contribution)

K8SPSMDB-1180: Fix a bug where rotation functionality didn’t work for scheduled backups

Deprecation, Rename and Removal

The new enableVolumeExpansion Custom Resource option allows users to disable the automated storage scaling with Volume Expansion capability. The
default value of this option is false , which means that the automated scaling is turned off by default.

A number of Service exposure Custom Resource options in the replsets , sharding.configsvrReplSet , and sharding.mongos subsections were
renamed to provide a uniDed experience with other Percona Operators:

expose.serviceAnnotations option renamed to expose.annotations

expose.serviceLabels option renamed to expose.labels

expose.exposeType option renamed to expose.type

Supported Platforms
The Operator was developed and tested with Percona Server for MongoDB 5.0.29-25, 6.0.18-15, and 7.0.14-8. Other options may also work but have not been
tested. The Operator also uses Percona Backup for MongoDB 2.7.0.

The following platforms were tested and are o`cially supported by the Operator 1.18.0:

Google Kubernetes Engine (GKE) 1.28-1.30

Amazon Elastic Container Service for Kubernetes (EKS) 1.28-1.31

OpenShift Container Platform 4.13.52 - 4.17.3

Azure Kubernetes Service (AKS) 1.28-1.31

Minikube 1.34.0 based on Kubernetes 1.31.0

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPSMDB-739
https://jira.percona.com/browse/K8SPSMDB-1002
https://jira.percona.com/browse/K8SPSMDB-1096
https://jira.percona.com/browse/K8SPSMDB-1135
https://jira.percona.com/browse/K8SPSMDB-1152
https://jira.percona.com/browse/K8SPSMDB-1160
https://jira.percona.com/browse/K8SPSMDB-1132
https://jira.percona.com/browse/K8SPSMDB-912
https://jira.percona.com/browse/K8SPSMDB-1047
https://www.mongodb.com/docs/manual/reference/replica-configuration/#mongodb-rsconf-rsconf.writeConcernMajorityJournalDefault
https://jira.percona.com/browse/K8SPSMDB-1168
https://jira.percona.com/browse/K8SPSMDB-1170
https://jira.percona.com/browse/K8SPSMDB-1184
https://jira.percona.com/browse/K8SPSMDB-1180
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

Percona Operator for MongoDB 1.17.0

Date

September 09, 2024

Installation

Installing Percona Operator for MongoDB

Release Highlights

Declarative user management (technical preview)

Before the Operator version 1.17.0 custom MongoDB users had to be created manually. Now the declarative creation of custom MongoDB users is supported via
the users subsection in the Custom Resource. You can specify a new user in deploy/cr.yaml manifest, setting the user’s login name and database,
PasswordSecretRef (a reference to a key in a Secret resource containing user’s password) and as well as MongoDB roles on various databases which should be
assigned to this user:

See documentation to Dnd more details about this feature with additional explanations and the list of current limitations.

Liveness check improvements

Several improvements in logging were made related to the liveness checks, to allow getting more information for debugging, and to make these logs persist on
failures to allow further examination.

Liveness check logs are stored in the /data/db/mongod-data/logs/mongodb-healthcheck.log Dle, which can be accessed in the corresponding Pod if
needed. Starting from now, Liveness check generates more log messages, and the default log level is set to DEBUG .

Each time the health check fails, the current log is saved to a gzip compressed Dle named mongodb-healthcheck-<timestamp>.log.gz , and the mongodb-
healthcheck.log log Dle is reset. Logs older than 24 hours are automatically deleted.

New Features
K8SPSMDB-253: It is now possible to create and manage users via the Custom Resource

Improvements
K8SPSMDB-899: Add Labels for all Kubernetes objects created by Operator (backups/restores, Secrets, Volumes, etc.) to make them clearly distinguishable

K8SPSMDB-919: The Operator now checks if the needed Secrets exist and connects to the storage to check the validity of credentials and the existence of a
backup before starting the restore process

K8SPSMDB-934: Liveness checks are providing more debug information and keeping separate log archives for each failure with the 24 hours retention

K8SPSMDB-1057: Finalizers were renamed to contain fully qualiDed domain names (FQDNs), avoiding potential con_icts with other Dnalizer names in the
same Kubernetes environment

K8SPSMDB-1108: The new Custom Resource option allows setting custom containerSecurityContext for PMM containers

K8SPSMDB-994: Remove a limitation where it wasn’t possible to create a new cluster with splitHorizon enabled, leaving the only way to enable it later on the
running cluster

...
users:
- name: my-user
 db: admin
 passwordSecretRef:
 name: my-user-password
 key: my-user-password-key
 roles:
 - name: clusterAdmin
 db: admin
 - name: userAdminAnyDatabase
 db: admin

https://jira.percona.com/browse/K8SPSMDB-253
https://jira.percona.com/browse/K8SPSMDB-899
https://jira.percona.com/browse/K8SPSMDB-919
https://jira.percona.com/browse/K8SPSMDB-934
https://jira.percona.com/browse/K8SPSMDB-1057
https://jira.percona.com/browse/K8SPSMDB-1108
https://jira.percona.com/browse/K8SPSMDB-994

Bugs Fixed
K8SPSMDB-925: Fix a bug where the Operator generated “failed to start balancer” and “failed to get mongos connection” log messages when using Mongos
with servicePerPod and LoadBalancer services, while the cluster was operating properly

K8SPSMDB-1105: The memory requests and limits for backups were increased in the deploy/cr.yaml conDguration Dle example to re_ect the Percona
Backup for MongoDB minimal pbm-agents requirement of 1 Gb RAM needed for stable operation

K8SPSMDB-1074: Fix a bug where MongoDB Cluster could not failover in case of all Pods downtime and exposeType Custom Resource option set to either
NodePort or LoadBalancer

K8SPSMDB-1089: Fix a bug where it was impossible to delete a cluster in error state with Dnalizers present

K8SPSMDB-1092: Fix a bug where Percona Backup for MongoDB log messages during physical restore were not accessible with the kubectl logs
command

K8SPSMDB-1094: Fix a bug where it wasn’t possible to create a new cluster with upgradeOptions.setFCV Custom Resource option set to true

K8SPSMDB-1110: Fix a bug where nil Custom Resource annotations were causing the Operator panic

Deprecation, Rename and Removal
Finalizers were renamed to contain fully qualiDed domain names to comply with the Kubernetes standards.

PerconaServerMongoDB Custom Resource:

delete-psmdb-pods-in-order Dnalizer renamed to percona.com/delete-psmdb-pods-in-order

delete-psmdb-pvc Dnalizer renamed to percona.com/delete-psmdb-pvc

PerconaServerMongoDBBackup Custom Resource:

delete-backup Dnalizer renamed to percona.com/delete-backup

Key change in psmdb-db Helm chart: the parameter for deDning system users is renamed from users to systemUsers . The users parameter now handles the
new Declarative user management feature. This change impacts users upgrading to this version via Helm: make sure that values manifests are changed
accordingly.

Supported Platforms
The Operator was developed and tested with Percona Server for MongoDB 5.0.28-24, 6.0.16-13, and 7.0.12-7. Other options may also work but have not been
tested. The Operator also uses Percona Backup for MongoDB 2.5.0.

The following platforms were tested and are o`cially supported by the Operator 1.17.0:

Google Kubernetes Engine (GKE) 1.27-1.30

Amazon Elastic Container Service for Kubernetes (EKS) 1.28-1.30

OpenShift Container Platform 4.13.48 - 4.16.9

Azure Kubernetes Service (AKS) 1.28-1.30

Minikube 1.33.1

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPSMDB-925
https://jira.percona.com/browse/K8SPSMDB-1105
https://jira.percona.com/browse/K8SPSMDB-1074
https://jira.percona.com/browse/K8SPSMDB-1089
https://jira.percona.com/browse/K8SPSMDB-1092
https://jira.percona.com/browse/K8SPSMDB-1094
https://jira.percona.com/browse/K8SPSMDB-1110
https://github.com/percona/percona-helm-charts/tree/main/charts/psmdb-db
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

Percona Operator for MongoDB 1.16.2

Date

July 23, 2024

Installation

Installing Percona Operator for MongoDB

Bugs Fixed
K8SPSMDB-1117: Fix a bug where the Operator incorrectly compares G with Gi and and tries to downscale PVC size after upgrade

Supported Platforms
The Operator was developed and tested with Percona Server for MongoDB 5.0.26-22, 6.0.15-12, and 7.0.8-5. Other options may also work but have not been
tested. The Operator also uses Percona Backup for MongoDB 2.4.1.

The following platforms were tested and are o`cially supported by the Operator 1.16.2:

Google Kubernetes Engine (GKE) 1.26-1.29

Amazon Elastic Container Service for Kubernetes (EKS) 1.26-1.29

OpenShift Container Platform 4.12.56 - 4.15.11

Azure Kubernetes Service (AKS) 1.27-1.29

Minikube 1.33.0

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPSMDB-1117
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

Percona Operator for MongoDB 1.16.1

Date

June 24, 2024

Installation

Installing Percona Operator for MongoDB

Bugs Fixed
K8SPSMDB-1101: Fix a bug where manually generated TLS certiDcates couldn’t be applied because Operator was replacing them with auto-generated ones

Supported Platforms
The Operator was developed and tested with Percona Server for MongoDB 5.0.26-22, 6.0.15-12, and 7.0.8-5. Other options may also work but have not been
tested. The Operator also uses Percona Backup for MongoDB 2.4.1.

The following platforms were tested and are o`cially supported by the Operator 1.16.1:

Google Kubernetes Engine (GKE) 1.26-1.29

Amazon Elastic Container Service for Kubernetes (EKS) 1.26-1.29

OpenShift Container Platform 4.12.56 - 4.15.11

Azure Kubernetes Service (AKS) 1.27-1.29

Minikube 1.33.0

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPSMDB-1101
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

Percona Operator for MongoDB 1.16.0

Date

May 24, 2024

Installation

Installing Percona Operator for MongoDB

Release Highlights

General availability of Physical Backups

Two releases ago we added experimental support for Physical Backups and Restores to signiDcantly reduce Recovery Time Objective (RTO), especially for big
data sets. With this release Percona announces the general availability of physical backups and restores for Percona Server for MongoDB with the Operator.

Automated volume expansion

Kubernetes supports the Persistent Volume expansion as a stable feature since v1.24. Using it with the Operator previously involved manual operations. Now
this is automated, and users can resize their PVCs by just changing the value of the resources.requests.storage option in the PerconaServerMongoDB
custom resource. This feature is in a technical preview stage and is not recommended for production environments.

Update from September 16, 2025 Though the Operator automates the storage resizing, the users must still trigger the process by modifying the Custom Resource
and applying the new conDguration.

Support for MongoDB 7

Starting from this release, MongoDB 7.0 is now supported. Read our take on top-5 changes in MongoDB version 7 in this blog post .

Support for ARM architecture (technical preview)

ARM architecture meets the intensive growth of its usage nowadays, both in a segment of highly e`cient cloud computing based on systems like AWS Graviton,
and the Internet of Things or Edge. O`cially certiDed images for ARM are now available for the Operator, as well as Percona Server for MongoDB and Percona
Backup for MongoDB, while database monitoring based on PMM Client is yet to follow.

Fixing the overloaded allowUnsafeConfigurations flag

In the previous Operator versions allowUnsafeConfigurations Custom Resource option was used to allow conDguring a cluster with unsafe parameters, such
as starting it with less than 3 replica set instances. In fact, setting this option to true resulted in a wide range of reduced safety features without the user’s
explicit intent: disabling TLS, allowing backups in unhealthy clusters, etc.

With this release, a separate unsafeFlags Custom Resource section is introduced for the Dne-grained control of the safety loosening features:

Also, TLS conDguration is now enabled or disabled by a special tls.mode Custom Resource option, which can be set to disabled , allowTLS , preferTLS , or
requireTLS values.

New Features
K8SPSMDB-1000: Users who store backups on Azure Blob Storage can now use private endpoints

K8SPSMDB-1055: The kubectl get psmdb-backup command now shows latest restorable time to make it easier to pick a point-in-time recovery target

K8SPSMDB-491: It is now possible to specify the existing cert-manager issuer which should be used by the Operator

K8SPSMDB-733: It is now possible to resize Persistent Volume Claims by patching the PerconaServerMongoDB custom resource: change
persistentVolumeClaim.resources.requests.storage and let the Operator do the scaling

unsafeFlags:
 tls: false
 replsetSize: false
 mongosSize: false
 terminationGracePeriod: false
 backupIfUnhealthy: false

https://www.percona.com/blog/backups-and-disaster-recovery/#:~:text=Recovery%20time%20objective%20(RTO)%20is,afford%20to%20lose%20after%20recovery
https://www.percona.com/blog/5-changes-you-should-know-in-mongodb-7-0/
https://jira.percona.com/browse/K8SPSMDB-1000
https://jira.percona.com/browse/K8SPSMDB-1055
https://jira.percona.com/browse/K8SPSMDB-491
https://jira.percona.com/browse/K8SPSMDB-733

Improvements
K8SPSMDB-1004: Exposing replica set with split-horizon DNS allows to specify URIs with non-standard port numbers, which are particularly useful with the
NodePort service type

K8SPSMDB-1013: MongoDB 7.0 is now supported.

K8SPSMDB-1015: Information about backup and restore operations is now included in the Operator’s logs

K8SPSMDB-951, K8SPSMDB-979 and K8SPSMDB-1021: The Operator now allows setting custom conDguration for Percona Backup for MongoDB through the
set of new Custom Resource options under backup.configuration.backupOptions , backup.configuration.restoreOptions , and
backup.storages.s3.retryer subsections

K8SPSMDB-1029: Mongod is now run in quiet mode by default to reduce the amount of log messages

K8SPSMDB-1032: It is now possible to deDne TCP port for mongos Service when it is exposed through a NodePort (thanks to Mike Devresse for contribution)

K8SPSMDB-1062: The Operator now sets appProtocol to mongo for Service objects, which is useful for service mesh implementations (thanks to Søren
Mathiasen for contribution)

K8SPSMDB-732: Integration of the Operator with OpenLDAP can now be secured by using TLS connections

K8SPSMDB-755: New allowInvalidCertificates option allows to enable or disable bypassing MongoDB Shell checks for the certiDcates presented by the
mongod/mongos instance, useful for self-signed certiDcates

K8SPSMDB-948: O`cially certiDed images for ARM architecture are now available for the Operator, as well as Percona Server for MongoDB and Percona
Backup for MongoDB

K8SPSMDB-993: To avoid backup fail on clusters where Percona Backup for MongoDB resync process takes too long, the Operator now checks, if there is still
a resync operation working, with exponentially increasing interval and total wait time until failure equal to 8715 seconds

K8SPSMDB-995: The Operator now allows storing key for backups server-side AWS KMS encryption in a Secret conDgurable with the secrets.sse Custom
Resource option

K8SPSMDB-780: Removing allowUnsafeConfigurations Custom Resource option in favor of Dne-grained safety control in the unsafeFlags subsection

K8SPSMDB-1042: Helm chart for Percona Server for MongoDB now accepts replica set options as the map argument instead of the array one used in
previous releases; this simpliDes how arguments are speciDed in the command line and allows to specify only part of the replica set parameters, relying on
the default values for the other part. Take this change into account if you are installing database via helm and want to use set of custom options from
previous releases

Bugs Fixed
K8SPSMDB-1011: Fix a bug where custom logins for system users stopped working after deleting and recreating back the users Secret (thanks for Patrick
Wolleb for report)

K8SPSMDB-1014: Fix a bug that certiDcate rotation was bringing the sharded MongoDB cluster down for clusters originally created with the Operator version
prior to 1.15.0 (thanks to Stiliyan Stefanov for reporting)

K8SPSMDB-1018: Fix a bug where MongoDB container startup would fail if the MongoDB image being used contained the numactl package

K8SPSMDB-1024: Fix a bug where environment variable wasn’t properly updated in the Percona Backup for MongoDB container entry script (thanks to
Rockawear for contribution)

K8SPSMDB-1035: Fixed a bug where the empty secretName Deld was not allowed for backup jobs that might not need it when accessing AWS S3 buckets
based on IAM roles (thanks to Sergey Zelenov for contribution)

K8SPSMDB-1036: Fix a bug due to which restoring backup to a new cluster was broken by incompatibility with Percona Backup for MongoDB 2.3.0

K8SPSMDB-1038: Fix a bug where mongos Services were deleted if the cluster was set to paused state

K8SPSMDB-1039: Fix a bug which prevented deleting PMM agent from the PMM Server inventory on Pod termination

K8SPSMDB-1058: A minor missing privileges issue caused _ooding MongoDB logs with “Checking authorization failed” errors

K8SPSMDB-1070: Fix a bug where panic was happening in delete-psmdb-pods-in-order Dnalizer if the cluster was deleted prior to creating Pods

K8SPSMDB-940: Fix a bug due to which the Operator didn’t allow to set serviceAccount for mongos Pods

K8SPSMDB-985: Fix a bug where pbmPod key in backup object was only showing one replica/pod

Deprecation and removal

Starting from now, allowUnsafeConfigurations Custom Resource option is deprecated in favor of a number of options under the unsafeFlags
subsection. Setting allowUnsafeConfigurations won’t have any effect; upgrading existing clusters with allowUnsafeConfigurations=true will cause
everything under unsafeFlags set to true and TLS funuctionality disabled

https://jira.percona.com/browse/K8SPSMDB-1004
https://jira.percona.com/browse/K8SPSMDB-1013
https://jira.percona.com/browse/K8SPSMDB-1015
https://jira.percona.com/browse/K8SPSMDB-951
https://jira.percona.com/browse/K8SPSMDB-979
https://jira.percona.com/browse/K8SPSMDB-1021
https://jira.percona.com/browse/K8SPSMDB-1029
https://www.mongodb.com/docs/manual/reference/program/mongod/#std-option-mongod.--quiet
https://jira.percona.com/browse/K8SPSMDB-1032
https://jira.percona.com/browse/K8SPSMDB-1062
https://kubernetes.io/docs/concepts/services-networking/service/#application-protocol
https://jira.percona.com/browse/K8SPSMDB-732
https://jira.percona.com/browse/K8SPSMDB-755
https://jira.percona.com/browse/K8SPSMDB-948
https://jira.percona.com/browse/K8SPSMDB-993
https://jira.percona.com/browse/K8SPSMDB-995
https://jira.percona.com/browse/K8SPSMDB-780
https://jira.percona.com/browse/K8SPSMDB-1042
https://jira.percona.com/browse/K8SPSMDB-1011
https://jira.percona.com/browse/K8SPSMDB-1014
https://jira.percona.com/browse/K8SPSMDB-1018
https://jira.percona.com/browse/K8SPSMDB-1024
https://jira.percona.com/browse/K8SPSMDB-1035
https://jira.percona.com/browse/K8SPSMDB-1036
https://jira.percona.com/browse/K8SPSMDB-1038
https://jira.percona.com/browse/K8SPSMDB-1039
https://jira.percona.com/browse/K8SPSMDB-1058
https://jira.percona.com/browse/K8SPSMDB-1070
https://jira.percona.com/browse/K8SPSMDB-940
https://jira.percona.com/browse/K8SPSMDB-985
http://localhost:8001/percona-operator-for-mongodb/print_page.html#operator-operator-unsafeflags-section

MongoDB 4.4 support in the Operator has reached its end-of-life. Starting from now Percona will not provide o`cially certiDed images for it. Make sure that
you have a supported MongoDB version before upgrading the Operator to 1.16.0. You can use major version upgrade functionality.

Supported Platforms
The Operator was developed and tested with Percona Server for MongoDB 5.0.26-22, 6.0.15-12, and 7.0.8-5. Other options may also work but have not been
tested. The Operator also uses Percona Backup for MongoDB 2.4.1.

The following platforms were tested and are o`cially supported by the Operator 1.16.0:

Google Kubernetes Engine (GKE) 1.26-1.29

Amazon Elastic Container Service for Kubernetes (EKS) 1.26-1.29

OpenShift Container Platform 4.12.56 - 4.15.11

Azure Kubernetes Service (AKS) 1.27-1.29

Minikube 1.33.0

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

Percona Operator for MongoDB 1.15.0

Date

October 9, 2023

Installation

Installing Percona Operator for MongoDB

Release Highlights

Physical Backups now support Point-in-time Recovery (in tech preview)

In the previous 1.14.0 release we added support for Physical Backups and Restores to signiDcantly reduce Recovery Time Objective (RTO .)), especially for big
data sets. But the problem with losing data between backups - in other words Recovery Point Objective (RPO) - for physical backups was not solved. With this
release users can greatly reduce RPO by leveraging the Point-in-time Recovery feature in the Operators. Under the hood we store logical oplogs along with
physical backups into the object storage. Read more about this feature in our documentation.

Encrypted backups with Server Side Encryption (SSE)

Backups stored on S3 compatible storage can now be encrypted with Server Side Encryption (SSE) to pass certain compliance or security requirements. Users
can leverage integration with AWS KMS or just encrypt/decrypt backups with AES-256 encryption algorithm. It is important to remember that Operator does not
store keys and users can choose which key storage to use.

New Features

K8SPSMDB-227 The new topologySpreadConstraints Custom Resource option allows to use Pod Topology Spread Constraints to achieve even
distribution of Pods across the Kubernetes cluster

K8SPSMDB-792 and K8SPSMDB-974 The new “sleep inDnity” mode available for replset and conDg server containers allows running the Pod without starting
mongod useful to examine a problematic Pod that is constantly restarting

K8SPSMDB-801 It is now possible to delete a backup with its PITR data on retention period or with delete-backup Dnalizer (there were no PITR Dles deletion
in previous versions)

K8SPSMDB-926 Point-in-time recovery is now supported with physical backups to signiDcantly reduce Recovery Point Objective (RPO)

K8SPSMDB-961 The new sharding.balancer.enabled Custom Resource option allows to disable Load Balancer on a cross-site replication managed
cluster

Improvements

K8SPSMDB-662 Restoring a backup with point-in-time recovery can now be easily done to a latest available position by setting pitr.type
PerconaServerMongoDBRestore Custom Resource option to latest

K8SPSMDB-774 The Transport encryption documentation now includes details on updating TLS certiDcates

K8SPSMDB-807 A custom name for a Replica Set conDg server instead of the default cfg one can be set in the custom conDguration, which can be useful for
migration purposes

K8SPSMDB-814 and K8SPSMDB-927 The new terminationGracePeriodSeconds Custom Resource option allows to set termination period for Replica Set
containers, useful to cleanly shutdown clusters with big data sets

K8SPSMDB-850 Server Side Encryption for backups with for S3 and S3-compatible storage is now supported (thanks to Mert Gönül for contribution)

K8SPSMDB-903 The backup destination URI now includes bucket/container name, allowing the user to specify the full path to the backup as an easy to read
string

K8SPSMDB-924 The token associated with the operator’s ServiceAccount is no longer printed in the log when a scheduled backup is running; this improves
security and avoids logging uninformative elements

K8SPSMDB-938 ConDguring Kubernetes host aliases is now possible for replica set, conDg server, and mongos Pods

K8SPSMDB-946 The psmdb-backup object now includes the name of the Pod that made the backup, to save users from searching for the correct Pod to
examine the Percona Backup for MongoDB logs (previously it was necessary to check replica set Pods one by one until logs were found)

https://www.percona.com/blog/backups-and-disaster-recovery/#:~:text=Recovery%20time%20objective%20(RTO)%20is,afford%20to%20lose%20after%20recovery
https://jira.percona.com/browse/K8SPSMDB-227
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/#spread-constraints-for-pods
https://jira.percona.com/browse/K8SPSMDB-792
https://jira.percona.com/browse/K8SPSMDB-974
https://jira.percona.com/browse/K8SPSMDB-801
https://jira.percona.com/browse/K8SPSMDB-926
https://jira.percona.com/browse/K8SPSMDB-961
https://jira.percona.com/browse/K8SPSMDB-662
https://jira.percona.com/browse/K8SPSMDB-774
https://jira.percona.com/browse/K8SPSMDB-807
https://jira.percona.com/browse/K8SPSMDB-814
https://jira.percona.com/browse/K8SPSMDB-927
https://jira.percona.com/browse/K8SPSMDB-850
https://jira.percona.com/browse/K8SPSMDB-903
https://jira.percona.com/browse/K8SPSMDB-924
https://jira.percona.com/browse/K8SPSMDB-938
https://jira.percona.com/browse/K8SPSMDB-946

K8SPSMDB-976 The Operator now does not start backups if storages or credentials are not set, avoiding fruitless attempts to conDgure Percona Backup for
MongoDB and cluster state repeatedly changing between ready and error

K8SPSMDB-929 Using split-horizon DNS for the external access to MongoDB Replica Set Pods of the exposed cluster is now possible

Bugs Fixed

K8SPSMDB-913 Fix a bug due to which restoring a backup on a cluster with mongos exposed via LoabBalancer resulted in recreating mongos Service with a
new IP address

K8SPSMDB-956 Fix a bug that certiDcate rotation was bringing the sharded MongoDB cluster down (thanks to Stiliyan for reporting)

K8SPSMDB-854 Backup stucks after cluster was exposed

K8SPSMDB-977 The out of memory problem could cause cluster got stuck in the “initializing” state at reconciliation

K8SPSMDB-778 Fix a bug due to which the Operator did not delete arbiter instances during replica set deletion

K8SPSMDB-791 Fix a bug which prevented setting LoadBalancerSourceRanges Custom Resource option when replsets.expose.exposeType is set to
Loadbalancer

K8SPSMDB-813 Fix a bug due to which secure connection was not used for MongoDB Liveness check (thanks to t-yrka for contribution)

K8SPSMDB-818 Fix a bug where clusterMonitor user had not enough permissions for PMM monitoring with --enable-all-collectors _ag turned on

K8SPSMDB-872 The Operator didn’t prevent attempts to restore a backup with “error” status, which could cause the cluster got stuck in the “initializing” state

K8SPSMDB-876 Fix a bug due to which delete-psmdb-pods-in-order Dnalizer, intended to shutdown primary Pod last, affected only shards and did not
affect conDg replica set

K8SPSMDB-911 Fix a bug where connection string with credentials was included in the backup-agent container logs

K8SPSMDB-958 Fix insu`cient permissions issue that didn’t allow to monitor mongos instances with Percona Monitoring and Management (PMM)

K8SPSMDB-962 Fix a memory leak due to which the Operator’s Pod continually increased both CPU and memory usage in cluster-wide mode (with an
unmanaged cluster)

K8SPSMDB-968 Fix a bug due to which the endpoints list returned by kubectl get psmdb command contained fully qualiDed domain names (FQDN) instead
of IP addresses when the replset was exposed as a LoadBalancer and the clusterServiceDNSMode was set to Internal

Deprecation and removal

K8SPSMDB-883 The spec.mongod section deprecated in the Operator version 1.12.0 is Dnally removed from the Custom Resource conDguration. If you have
encryption disabled using the deprecated mongod.security.enableEncryption option, you need to set encryption disabled with custom conDguration
before removing mongod section (and before upgrade):

Supported Platforms
The Operator was developed and tested with Percona Server for MongoDB 4.4.24, 5.0.20, and 6.0.9. Other options may also work but have not been tested. The
Operator also uses Percona Backup for MongoDB 2.3.0.

The following platforms were tested and are o`cially supported by the Operator 1.15.0:

Google Kubernetes Engine (GKE) 1.24-1.28

Amazon Elastic Container Service for Kubernetes (EKS) 1.24-1.28

OpenShift Container Platform 4.11 - 4.13

Azure Kubernetes Service (AKS) 1.25-1.28

spec:
 ...
 replsets:
 - name: rs0
 ...
 configuration: |
 security:
 enableEncryption: false
 ...

https://jira.percona.com/browse/K8SPSMDB-976
https://jira.percona.com/browse/K8SPSMDB-929
https://jira.percona.com/browse/K8SPSMDB-913
https://jira.percona.com/browse/K8SPSMDB-956
https://jira.percona.com/browse/K8SPSMDB-854
https://jira.percona.com/browse/K8SPSMDB-977
https://jira.percona.com/browse/K8SPSMDB-778
https://jira.percona.com/browse/K8SPSMDB-791
https://jira.percona.com/browse/K8SPSMDB-813
https://jira.percona.com/browse/K8SPSMDB-818
https://jira.percona.com/browse/K8SPSMDB-872
https://jira.percona.com/browse/K8SPSMDB-876
https://jira.percona.com/browse/K8SPSMDB-911
https://jira.percona.com/browse/K8SPSMDB-958
https://jira.percona.com/browse/K8SPSMDB-962
https://jira.percona.com/browse/K8SPSMDB-968
https://jira.percona.com/browse/K8SPSMDB-883
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/

Minikube 1.31.2 (based on Kubernetes 1.28)

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

https://github.com/kubernetes/minikube

Percona Operator for MongoDB 1.14.0

Date

March 13, 2023

Installation

Installing Percona Operator for MongoDB

Release Highlights
Backups and Restores are critical for business continuity. With this release you can signiDcantly reduce your Recovery Time Objective (RTO) with Physical
backups support in the Operator. The feature is now in technical preview.

MongoDB 6.0 comes with a variety of improvements and new features. It is now fully supported by the Operator. See our documentation to learn how to
upgrade.

New Features

K8SPSMDB-713 Physical backups are now supported by the Operator to recover big data sets faster

K8SPSMDB-737 MongoDB 6.0 is now o`cially supported in addition to 4.x and 5.x versions. Read more about version 6 in our blog post

K8SPSMDB-824 New ignoreAnnotations and ignoreLabels Custom Resource options allow to list speciDc annotations and labels for Kubernetes Service
objects, which the Operator should ignore (useful with various Kubernetes _avors which add annotations to the objects managed by the Operator)

Improvements

K8SPSMDB-658 The Operator log messages appearing during the pause/unpause of the cluster were improved to more clearly indicate this event

K8SPSMDB-708 The new initContainerSecurityContext option allows to conDgure securityContext for the container which can be used instead of the
o`cial image during the initial Operator installation

K8SPSMDB-721 The backup subsystem was improved so that database is not crashing in case if the backup agent is not able to connect to MongoDB (e.g.
due to misconDgured password)

K8SPSMDB-758 The ServiceMesh fully qualiDed domain names (FQDNs) for conDg servers are now prioritized if DNSMode is set to ServiceMesh (thanks to
Jo Lyshoel for contribution)

K8SPSMDB-793 It is now possible to set annotations and labels for Persistent Volume Claims for better integration with Cloud Native tools

K8SPSMDB-803 The Operator now does not attempt to start Percona Monitoring and Management (PMM) client sidecar if the corresponding secret does not
contain the pmmserver or pmmserverkey key

K8SPSMDB-817 Adding external nodes to the cluster is now allowed even when the replica set is not exposed. This unblocks the creation of complex multi-
cluster topologies

K8SPSMDB-844 Update the RuntimeClass API version to v1 from the v1beta1 , which was already deprecated since the Kubernetes version 1.22

K8SPSMDB-848 Remove formatted strings from log messages to avoid confronting with structured logging based on key-value pairs

K8SPSMDB-882 Percona Server for MongoDB Helm chart now persists data by default instead of deleting Persistent Volumes after the cluster deletion

CLOUD-768 Helm charts now use random passwords generated by the Operator by default instead of providing pre-conDgured passwords speciDed in the
values Dle

K8SPSMDB-853 To improve the operator we capture anonymous telemetry and usage data. In this release we add more data points to it

K8SPSMDB-867 The Operator now conDgures replset members using local fully-qualiDed domain names (FQDN) resolvable and available only from inside the
cluster instead of using IP addresses; the old behavior can be restored by setting the clusterServiceDNSMode option to External

Bugs Fixed

K8SPSMDB-784 Fix a bug due to which the enableEncryption MongoDB conDguration option was always activated when using psmdb-db Helm Chart

K8SPSMDB-796 Fix a bug due to which backup failed if replica set was exposed

K8SPSMDB-854 Fix a bug due to which backup got stuck after the cluster was exposed

https://www.percona.com/blog/mongodb-6-0-should-you-upgrade-now/
https://jira.percona.com/browse/K8SPSMDB-713
https://jira.percona.com/browse/K8SPSMDB-737
https://www.percona.com/blog/mongodb-6-0-should-you-upgrade-now/
https://jira.percona.com/browse/K8SPSMDB-824
https://jira.percona.com/browse/K8SPSMDB-658
https://jira.percona.com/browse/K8SPSMDB-708
https://jira.percona.com/browse/K8SPSMDB-721
https://jira.percona.com/browse/K8SPSMDB-758
https://jira.percona.com/browse/K8SPSMDB-793
https://jira.percona.com/browse/K8SPSMDB-803
https://jira.percona.com/browse/K8SPSMDB-817
https://jira.percona.com/browse/K8SPSMDB-844
https://jira.percona.com/browse/K8SPSMDB-848
https://jira.percona.com/browse/K8SPSMDB-882
https://jira.percona.com/browse/CLOUD-768
https://jira.percona.com/browse/K8SPSMDB-853
https://jira.percona.com/browse/K8SPSMDB-867
https://jira.percona.com/browse/K8SPSMDB-784
https://jira.percona.com/browse/K8SPSMDB-796
https://jira.percona.com/browse/K8SPSMDB-854

K8SPSMDB-471 Fix a bug due to which in case of scheduled backups with error status delete-backup Dnalizer didn’t allow to delete the appropriate failed
resources and the Kubernetes namespace (thanks to Aliaksandr Karavai for reporting)

K8SPSMDB-674 Fix a bug that caused the Operator not deleting unneeded Services after the replica set exposing is turned off

K8SPSMDB-742 Fix a bug that caused the updates of the sharding.mongos.expose.serviceAnnotations option to be silently rejected

K8SPSMDB-766 and K8SPSMDB-767 Fix a bug where the combination of delete-psmdb-pods-in-order and delete-psmdb-pvc Dnalizers was not
working

K8SPSMDB-770 We now mention the namespace name in the log message to ease debugging when the cluster-wide mode is used

K8SPSMDB-797 Fix the backup/restore documentation not clearly mentioning that user should specify the bucket for the S3 storage

K8SPSMDB-820 Fix a bug which prevented the parallel backup jobs execution for different MongoDB clusters in the cluster-wide mode

K8SPSMDB-823 Fix a bug where backups were not working in case of ReplicaSet exposed with NodePort

K8SPSMDB-836 Fix backups being incorrectly marked as error while still being in starting status

K8SPSMDB-841 Fix a bug which turned the cluster into unready status after switching from the LoadBalancer expose to ClusterIP

K8SPSMDB-843 Fix a bug which made the cluster unable to start if it was recreated with the same Custom Resource after delete without deleting PVCs and
Secrets

K8SPSMDB-846 Fix a bug due to which scaling the replica set down to 1 instance caused the last Pod to remain Secondary instead of becoming Primary

K8SPSMDB-866 Fix the bug due to which the Operator was continuously _ooding the log with error messages if the PMM server credentials were missing

Known Issues and Limitations

K8SPSMDB-875 Physical backups cannot be restored on the clusters with arbiter, non-voting, or delayed members due to current Percona Backup for
MongoDB limitations

K8SPSMDB-846 After switching the cluster to unsafe mode by setting allowUnsafeConDg: true, it is not possible to switch back into safe mode. The user can
still scale the cluster safely, but the _ag is ignored

Supported Platforms
The Operator was developed and tested with Percona Server for MongoDB 4.4.18, 5.0.14, and 6.0.4. Other options may also work but have not been tested.

The following platforms were tested and are o`cially supported by the Operator 1.14.0:

Google Kubernetes Engine (GKE) 1.22 - 1.25

Amazon Elastic Container Service for Kubernetes (EKS) 1.22 - 1.24

OpenShift Container Platform 4.10 - 4.12

Azure Kubernetes Service (AKS) 1.23 - 1.25

Minikube 1.29

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPSMDB-471
https://jira.percona.com/browse/K8SPSMDB-674
https://jira.percona.com/browse/K8SPSMDB-742
https://jira.percona.com/browse/K8SPSMDB-766
https://jira.percona.com/browse/K8SPSMDB-767
https://jira.percona.com/browse/K8SPSMDB-770
https://jira.percona.com/browse/K8SPSMDB-797
https://jira.percona.com/browse/K8SPSMDB-820
https://jira.percona.com/browse/K8SPSMDB-823
https://jira.percona.com/browse/K8SPSMDB-836
https://jira.percona.com/browse/K8SPSMDB-841
https://jira.percona.com/browse/K8SPSMDB-843
https://jira.percona.com/browse/K8SPSMDB-846
https://jira.percona.com/browse/K8SPSMDB-866
https://jira.percona.com/browse/K8SPSMDB-875
https://www.mongodb.com/docs/v6.0/core/replica-set-delayed-member/
https://jira.percona.com/browse/K8SPSMDB-846
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

Percona Operator for MongoDB 1.13.0

Date

September 15, 2022

Installation

Installing Percona Operator for MongoDB

Release Highlights

Azure Kubernetes Service (AKS) is now o`cially supported platform, so developers and vendors of the solutions based on the Azure platform can take
advantage of the o`cial support from Percona or just use o`cially certiDed Percona Operator for MongoDB images

Starting from now, the Operator can be installed in multi-namespace (so-called “cluster-wide”) mode, when a single Operator can be given a list of
namespaces in which to manage Percona Server for MongoDB clusters

New Features

K8SPSMDB-203 Support for the cluster-wide operator mode allowing one Operator to watch for Percona Server for MongoDB Custom Resources in several
namespaces

K8SPSMDB-287 Support for the HashiCorp Vault for encryption keys as a universal, secure and reliable way to store and distribute secrets without depending
on the operating system, platform or cloud provider

K8SPSMDB-704 Support for the Azure Kubernetes Service (AKS)

Improvements

K8SPSMDB-515 Allow setting requireTLS mode for MongoDB through the Operator to enforce security by restricting each MongoDB server to use TLS/SSL
encrypted connections only

K8SPSMDB-636 An additional databaseAdmin user was added to the list of system users which are automatically created by the Operator. This user is
intended to provision databases, collections and perform data modiDcations

K8SPSMDB-699 Disable automated upgrade by default to prevent an unplanned downtime for user applications and to provide defaults more focused on
strict user’s control over the cluster

K8SPSMDB-725 ConDguring the log structuring and leveling is now supported using the LOG_STRUCTURED and LOG_LEVEL environment variables. This
reduces the information overload in logs, still leaving the possibility of getting more details when needed, for example, for debugging

K8SPSMDB-719 Details about using sharding, Hashicorp Vault and cluster-wide mode were added to telemetry

K8SPSMDB-715 Starting from now, the Opearator changed its API version to v1 instead of having a separate API version for each release. Three last API
version are supported in addition to v1 , which substantially reduces the size of Custom Resource DeDnition to prevent reaching the etcd limit

K8SPSMDB-709 Make it possible to use API Key to authorize within Percona Monitoring and Management Server as a more convenient and modern
alternative password-based authentication

K8SPSMDB-707 Allow to set Service labels for replica set, conDg servers and mongos in Custom Resource to enable various integrations with cloud providers
or service meshes

Bugs Fixed

K8SPSMDB-702 Fix a bug which resulted in always using the force option when reconDguring MongoDB member, which is normally recommended only for
special scenarios such as crash recovery

K8SPSMDB-730 Fix a bug due to which point-in-time recovery was enabled and consequently disabled when setting Percona Backup for MongoDB
compression options without checking whether it was enabled in the Custom Resource

K8SPSMDB-660 Fix a bug due to which a successful backup could be erroneously marked as failed due to exceeding the start deadline in case of big number
of nodes, especially on sharded clusters

K8SPSMDB-686 Fix a bug that prevented downscaling sharded MongoDB cluster to a non-sharded replica set variant

K8SPSMDB-691 Fix a bug that produced an error in the Operator log in case of the empty SSL Secret name in Custom Resource

https://jira.percona.com/browse/K8SPSMDB-203
https://jira.percona.com/browse/K8SPSMDB-287
https://jira.percona.com/browse/K8SPSMDB-704
https://jira.percona.com/browse/K8SPSMDB-515
https://jira.percona.com/browse/K8SPSMDB-636
https://jira.percona.com/browse/K8SPSMDB-699
https://jira.percona.com/browse/K8SPSMDB-725
https://jira.percona.com/browse/K8SPSMDB-719
https://jira.percona.com/browse/K8SPSMDB-715
https://jira.percona.com/browse/K8SPSMDB-709
https://jira.percona.com/browse/K8SPSMDB-707
https://jira.percona.com/browse/K8SPSMDB-702
https://jira.percona.com/browse/K8SPSMDB-730
https://jira.percona.com/browse/K8SPSMDB-660
https://jira.percona.com/browse/K8SPSMDB-686
https://jira.percona.com/browse/K8SPSMDB-691

K8SPSMDB-696 Fix a bug that prevented removing additional annotations previously added under the spec.replsets.annotations Deld

K8SPSMDB-724 Fix a bug which caused the delete-backup Dnalizer not working causing backups being not deleted from buckets

K8SPSMDB-746 Fix a bug due to which the Operator was unable to initialize a three-member replica set with a primary-secondary-arbiter (PSA) architecture

K8SPSMDB-762 Fix a bug due to which the Operator was running the replSetReconDg MongoDB command at every reconciliation if arbiter was enabled

Deprecation, Rename and Removal

K8SPSMDB-690 CCustom Resource options under the sharding.mongos.auditLog subsection, deprecated since the Operator version 1.9.0 in favor of using
replsets.conDguration, were Dnally removed and cannot be used with the Operator

K8SPSMDB-709 Password-based authorization to Percona Monitoring and Management Server is now deprecated and will be removed in future releases in
favor of a token-based one. Password-based authorization was used by the Operator before this release to provide MongoDB monitoring, but now using the
API Key is the recommended authorization method

Supported Platforms
The Operator was developed and tested with Percona Server for MongoDB 4.2.22, 4.4.8, 4.4.10, 4.4.13, 4.4.16, 5.0.2, 5.0.4, and 5.0.11. Other options may also
work but have not been tested.

The following platforms were tested and are o`cially supported by the Operator 1.13.0:

Google Kubernetes Engine (GKE) 1.21 - 1.23

Amazon Elastic Container Service for Kubernetes (EKS) 1.21 - 1.23

OpenShift Container Platform 4.10 - 4.11

Azure Kubernetes Service (AKS) 1.22 - 1.24

Minikube 1.26

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPSMDB-696
https://jira.percona.com/browse/K8SPSMDB-724
https://jira.percona.com/browse/K8SPSMDB-746
https://jira.percona.com/browse/K8SPSMDB-762
https://jira.percona.com/browse/K8SPSMDB-690
https://jira.percona.com/browse/K8SPSMDB-709
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

Percona Operator for MongoDB 1.12.0

Date

May 5, 2022

Installation

Installing Percona Operator for MongoDB

Release Highlights

With this release, the Operator turns to a simpliDed naming convention and changes its o`cial name to Percona Operator for MongoDB

The Operator is able now to use the Amazon Web Services feature of authenticating applications running on EC2 instances based on Identity and Access
Management (IAM) roles assigned to the instance; this makes it possible to conDgure S3 backup on AWS without using IAM keys saved in Secrets

This release brings support for the Multi Cluster Services (MCS). This allows users to deploy MongoDB with Percona Operator across multiple Kubernetes
clusters using MCS, which extends the reach of the Service object beyond one cluster, so one Service can be used across multiple clusters. It can be used to
provide disaster recovery or perform a migration for MongoDB clusters.

The OpenAPI schema is now generated for the Operator , which allows Kubernetes to perform Custom Resource validation and saves user from occasionally
applying deploy/cr.yaml with syntax typos

New Features

K8SPSMDB-185: Allow using AWS EC2 instances for backups with IAM roles assigned to the instance instead of using stored IAM credentials (Thanks to
Oleksii for reporting this issue)

K8SPSMDB-625: Integrate the Operator with Multi Cluster Services (MCS)

K8SPSMDB-668: Adding support for enabling replication over a service mesh (Thanks to Jo Lyshoel for contribution)

Improvements

K8SPSMDB-473: Allow to skip TLS veriDcation for backup storage, useful for self-hosted S3-compatible storage with a self-issued certiDcate

K8SPSMDB-644: Make cacheSizeRatio parameter available as a custom value in psmdb-db-1.11.0 helm chart (Thanks to Richard CARRE for reporting this
issue)

K8SPSMDB-574: Allow user to choose the validity duration of the external certiDcate for cert manager

K8SPSMDB-634: Support point-in-time recovery compression levels for backups (Thanks to Damiano Albani for reporting this issue)

K8SPSMDB-570: The Operator documentation now includes a How-To on using Percona Server for MongoDB with LDAP authentication and authorization

K8SPSMDB-537: PMM container does not cause the crash of the whole database Pod if pmm-agent is not working properly

K8SPSMDB-684: Generate OpenAPI schema for and validate Custom Resource

Bugs Fixed

K8SPSMDB-597: Fix a bug in the Operator helm chart which caused deleting the watched Namespace on uninstall (Thanks to Andrei Nistor for reporting this
issue)

K8SPSMDB-640: Fix a regression which prevented labels from being applied to Pods after the Custom Resource change

K8SPSMDB-583: Fix a bug which caused backup crashing if spec.mongod.net.port not set or set to zero

K8SPSMDB-540 and K8SPSMDB-563: Fix a bug which could cause a cluster crash when reducing the conDgured Replicaset size between deletion and re-
creation of the cluster

K8SPSMDB-608: Fix a bug due to which the password of backup user was printed in backup agent logs (Thanks to Antoine Ozenne for reporting this issue)

K8SPSMDB-599: A new mongos.expose.servicePerPod option allows deploying a separate ClusterIP Service for each mongos instance, which prevents the
failure of a multi-threaded transaction executed with the same driver instance and ended up on a different mongos. Starting from this release, mongos is
deployed by StatefulSet instead of Deployment object

K8SPSMDB-656: Fix a bug which caused cluster name being not displayed in the backup Custom Resource output with psmdbCluster set in the backup spec

https://www.percona.com/doc/kubernetes-operator-for-psmongodb/index.html#installation
https://jira.percona.com/browse/K8SPSMDB-185
https://jira.percona.com/browse/K8SPSMDB-625
https://jira.percona.com/browse/K8SPSMDB-668
https://jira.percona.com/browse/K8SPSMDB-473
https://jira.percona.com/browse/K8SPSMDB-644
https://jira.percona.com/browse/K8SPSMDB-574
https://jira.percona.com/browse/K8SPSMDB-634
https://jira.percona.com/browse/K8SPSMDB-570
https://jira.percona.com/browse/K8SPSMDB-537
https://jira.percona.com/browse/K8SPSMDB-684
https://jira.percona.com/browse/K8SPSMDB-597
https://jira.percona.com/browse/K8SPSMDB-640
https://jira.percona.com/browse/K8SPSMDB-583
https://jira.percona.com/browse/K8SPSMDB-540
https://jira.percona.com/browse/K8SPSMDB-563
https://jira.percona.com/browse/K8SPSMDB-608
https://jira.percona.com/browse/K8SPSMDB-599
https://jira.percona.com/browse/K8SPSMDB-656

K8SPSMDB-653: Fix a bug due to which spec.ImagePullPolicy options from deploy/cr.yaml wasn’t applied to backup and pmm-client images

K8SPSMDB-632: Fix a bug which caused the Operator to perform Smart Update on the initial deployment

K8SPSMDB-624: Fix a bug due to which the Operator didn’t grant enough permissions to the Cluster Monitor user necessary for Percona Monitoring and
Management (PMM) (Thanks to Richard CARRE for reporting this issue)

K8SPSMDB-618: Improve security and meet compliance requirements by building MongoDB Operator based on Red Hat Universal Base Image (UBI) 8 instead
of UBI 7

K8SPSMDB-602: Fix a thread leak in a mongod container of the Replica Set Pods, which occurred when setting setFCV _ag to true in Custom Resource

K8SPSMDB-560: Fix a bug due to which serviceName tag was not set to all members in the Replica Set

K8SPSMDB-533: Fix a bug due to which setting password with a special character for a system user was breaking the cluster

Known Issues
K8SPSMDB-686: The Operator versions 1.11.0 and 1.12.0 can not be downscaled from a sharding to non-sharding/Replica Set conDguration on Google
Kubernetes Engine (GKE) 1.19-1.21 (GKE 1.22 is not affected)

Deprecation, Rename and Removal

K8SPSMDB-596: The spec.mongod section is removed from the Custom Resource conDguration. Starting from now, mongod options should be passed to
Replica Sets using spec.replsets.[].configuration key, except the following 3 options:

mongod.security.encryptionKeySecret key was left in a deprecated state in favor of the new spec.secrets.encryptionKey option

mongod.storage.wiredTiger.engineConfig.cacheSizeRatio and mongod.storage.inMemory.engineConfig.inMemorySizeRatio options are now
only available from the replsets.storage section

Before the upgrade, please ensure that you have moved all custom MongoDB parameters to proper places!

K8SPSMDB-228: The spec.psmdbCluster option in the example on-demand backup conDguration Dle backup/backup.yaml was renamed to
spec.clusterName (psmdbCluster will be valid till 1.15 version)

Supported Platforms
The following platforms were tested and are o`cially supported by the Operator 1.12.0:

OpenShift 4.7 - 4.10

Google Kubernetes Engine (GKE) 1.19 - 1.22

Amazon Elastic Container Service for Kubernetes (EKS) 1.19 - 1.22

Minikube 1.23

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPSMDB-653
https://jira.percona.com/browse/K8SPSMDB-632
https://jira.percona.com/browse/K8SPSMDB-624
https://jira.percona.com/browse/K8SPSMDB-618
https://jira.percona.com/browse/K8SPSMDB-602
https://jira.percona.com/browse/K8SPSMDB-560
https://jira.percona.com/browse/K8SPSMDB-533
https://jira.percona.com/browse/K8SPSMDB-686
https://jira.percona.com/browse/K8SPSMDB-596
https://jira.percona.com/browse/K8SPSMDB-228

Percona Distribution for MongoDB Operator 1.11.0

Date

December 21, 2021

Installation

For installation please refer to the documentation page

Release Highlights

In addition to S3-compatible storage, you can now conDgure backups to use Microsoft Azure Blob storage. This feature makes the Operator fully compatible
with Azure Cloud.

Custom sidecar containers allow users to customize Percona Distribution for MongoDB and other Operator components without changing the container
images. In this release, we enable even more customization, by allowing users to mount volumes into the sidecar containers.

New Features
K8SPSMDB-513: Add support of Microsoft Azure Blob storage for backups

Improvements

K8SPSMDB-422: It is now possible to set annotations to backup cron jobs (Thanks to Aliaksandr Karavai for contribution)

K8SPSMDB-534: mongos readiness probe now avoids running listDatabases command for all databases in the cluster to avoid unneeded delays on clusters
with an extremely large amount of databases

K8SPSMDB-527: Timeout parameters for liveness and readiness probes can be customized to avoid false-positives for heavy-loaded clusters

K8SPSMDB-520: Mount volumes into sidecar containers to enable customization

K8SPSMDB-463: Update backup status as error if it’s not started for a long time

K8SPSMDB-388: New backup.pitr.oplogSpanMin option controls how often oplogs are uploaded to the cloud storage

Bugs Fixed

K8SPSMDB-603: Fixed a bug where the Operator checked the presence of CPU limit and not memory limit when deciding whether to set the size of cache
memory for WiredTiger

K8SPSMDB-511 and K8SPSMDB-558: Fixed a bug where Operator changed NodePort port every 20 seconds for a Replica Set service (Thanks to Rajshekar
Reddy for reporting this issue)

K8SPSMDB-608: Fix a bug that resulted in printing the password of backup user the in backup agent logs (Thanks to Antoine Ozenne for reporting this issue)

K8SPSMDB-592: Fixed a bug where helm chart was incorrectly setting the serviceAnnotations and loadBalancerSourceRanges for mongos exposure

K8SPSMDB-568: Fixed a bug where upgrading to MongoDB 5.0 failed when using the upgradeOptions:apply option

Supported Platforms
The following platforms were tested and are o`cially supported by the Operator 1.11.0:

OpenShift 4.7 - 4.9

Google Kubernetes Engine (GKE) 1.19 - 1.22

Amazon Elastic Container Service for Kubernetes (EKS) 1.18 - 1.22

Minikube 1.22

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

https://www.percona.com/doc/kubernetes-operator-for-psmongodb/index.html#installation
https://jira.percona.com/browse/K8SPSMDB-513
https://jira.percona.com/browse/K8SPSMDB-422
https://jira.percona.com/browse/K8SPSMDB-534
https://jira.percona.com/browse/K8SPSMDB-527
https://jira.percona.com/browse/K8SPSMDB-520
https://jira.percona.com/browse/K8SPSMDB-463
https://jira.percona.com/browse/K8SPSMDB-388
https://jira.percona.com/browse/K8SPSMDB-603
https://jira.percona.com/browse/K8SPSMDB-511
https://jira.percona.com/browse/K8SPSMDB-558
https://jira.percona.com/browse/K8SPSMDB-608
https://jira.percona.com/browse/K8SPSMDB-592
https://jira.percona.com/browse/K8SPSMDB-568

Percona Distribution for MongoDB Operator 1.10.0

Date

September 30, 2021

Installation

For installation please refer to the documentation page

Release Highlights

Starting from this release, the Operator implements as a technical preview the possibility to include non-voting replica set members into the cluster, which do
not participate in the primary election process. This feature enables users to deploy non-voting members with the Operator through a Custom Resource object
without manual conDguration.

The technical preview of the cross-site replication feature allows users to add external replica set nodes into the cluster managed by the Operator, including
scenarios when one of the clusters is outside of the Kubernetes environment. External nodes can be run by another Operator or can be regular MongoDB
deployment. The feature is intended for the following use cases:

provide migrations of your regular MongoDB database to the Percona Server for MongoDB cluster under the Operator control, or carry on backward
migration,

deploy cross-regional clusters for Disaster Recovery.

New Features

K8SPSMDB-479: Allow users to add non-voting members to MongoDB replica, needed to have more than 7 nodes or to create a node in the edge location

K8SPSMDB-265: Cross region replication feature simpliDes the migrations and enables Disaster Recovery capabilities for MongoDB on Kubernetes

Improvements

K8SPSMDB-537: PMM container should not cause the crash of the whole database Pod if pmm-agent is not working properly

K8SPSMDB-517: Users can now run Percona Server for MongoDB 5 with the Operator. Version 5 support is added as a technical preview and is not
recommended for Production.

K8SPSMDB-490: Add validation for the Custom Resource name so that cluster name and replica set name do not exceed 51 characters in total

Bugs Fixed

K8SPSMDB-504: Fixed a race condition that could prevent the cluster with LoadBalancer-exposed replica set members from becoming ready

K8SPSMDB-470: Fix a bug where ServiceAnnotation and LoadBalancerSourceRanges Delds didn’t propagate to Kubernetes service (Thanks to Aliaksandr
Karavai for reporting this issue)

K8SPSMDB-531: Fix compatibility issues between Percona Kubernetes Operator for MongoDB and Calico (Thanks to Mykola Kruliv for reporting this issue)

K8SPSMDB-514: Fix a bug where backup cronJob created by the Operator did not include resources limits and requests, which prevented it to run in the
namespaces with resource quotas (Thanks to George Asenov for reporting this issue)

K8SPSMDB-512: Fix a bug where conDguring getLastErrorModes in the replica set causes the Operator to fail to reconcile (Thanks to Adam Watson for
contribution)

K8SPSMDB-553: Fix a bug where wrong S3 credentials caused backup to keep running despite the actual failure

K8SPSMDB-496: Fix a bug where Pods did not restart if custom MongoDB conDg was updated with a secret or a conDgmap

Supported Platforms
The following platforms were tested and are o`cially supported by the Operator 1.10.0:

OpenShift 4.6 - 4.8

https://www.percona.com/doc/kubernetes-operator-for-psmongodb/index.html#installation
https://jira.percona.com/browse/K8SPSMDB-479
https://jira.percona.com/browse/K8SPSMDB-265
https://jira.percona.com/browse/K8SPSMDB-537
https://jira.percona.com/browse/K8SPSMDB-517
https://jira.percona.com/browse/K8SPSMDB-490
https://jira.percona.com/browse/K8SPSMDB-504
https://jira.percona.com/browse/K8SPSMDB-470
https://jira.percona.com/browse/K8SPSMDB-531
https://jira.percona.com/browse/K8SPSMDB-514
https://jira.percona.com/browse/K8SPSMDB-512
https://jira.percona.com/browse/K8SPSMDB-553
https://jira.percona.com/browse/K8SPSMDB-496

Google Kubernetes Engine (GKE) 1.17 - 1.21

Amazon Elastic Container Service for Kubernetes (EKS) 1.16 - 1.21

Minikube 1.22

This list only includes the platforms that the Percona Operators are speciDcally tested on as part of the release process. Other Kubernetes _avors and versions
depend on the backward compatibility offered by Kubernetes itself.

Percona Distribution for MongoDB Operator 1.9.0

Date

June 29, 2021

Installation

For installation please refer to the documentation page

Release Highlights

Starting from this release, the Operator changes its o`cial name to Percona Distribution for MongoDB Operator. This new name emphasizes graduate
changes which incorporated a collection of Percona’s solutions to run and operate MongoDB Server, available separately as Percona Distribution for
MongoDB.

It is now possible to restore backups from S3-compatible storage to a new Kubernetes-based environment with no existing Backup Custom Resources

You can now customize Percona Server for MongoDB by storing custom conDguration for Replica Set, mongos, and ConDg Server instances in ConDgMaps or
in Secrets

New Features

K8SPSMDB-276: Restore backups to a new Kubernetes-based environment with no existing Backup Custom Resource

K8SPSMDB-444, K8SPSMDB-445: Allow storing custom conDguration in ConDgMaps and Secrets

Improvements

K8SPSMDB-365: Unblock backups even if just a single Replica Set node is available by setting allowUnsafeConfigurations _ag to true

K8SPSMDB-453: It is now possible to see the overall progress of the provisioning of MongoDB cluster resources and dependent components in Custom
Resource status

K8SPSMDB-451, K8SPSMDB-398: MongoDB cluster resource statuses in Custom Resource output (e.g. returned by kubectl get psmdb command) have
been improved and now provide more precise reporting

K8SPSMDB-425: Remove mongos.expose.enabled option from Custom Resource and always expose mongos (with the ClusterIP exposeType by default)

K8SPSMDB-421: Secret object containing system users passwords is now deleted along with the Cluster if delete-psmdb-pvc Dnalizer is enabled

K8SPSMDB-411: Added options to specify custom memory and CPU requirements for Arbiter instances

K8SPSMDB-329: Reduced the number of various etcd and k8s object updates from the operator to minimize the pressure on the Kubernetes cluster

Bugs Fixed

K8SPSMDB-437: Fixed a bug where Labels were not set on Persistent Volume Claim objects when set on the respective Pods

K8SPSMDB-435: Fixed a bug that prevented adding custom Labels to mongos Pods

K8SPSMDB-423: Fixed a bug where unpause of a cluster did not work when replsets.expose = LoadBalancer because of provisioning new Load
Balancers with different names (Thanks to Aliaksandr Karavai for reporting this issue)

K8SPSMDB-494: When upgrading MongoDB clusters with Smart Update, the statuses reported in Custom Resource are now re_ecting the real state

K8SPSMDB-489: Fixed a bug where the status of successful backups could be set to error in case of a cluster crash

K8SPSMDB-462: Fixed a bug where psmdb-backup object could not be deleted if the backup was not successful

K8SPSMDB-456: Fixed a bug where Smart Update was not upgrading a MongoDB deployment with a replica set consisting of one node

K8SPSMDB-455: Fixed a bug that prevented major version downgrade to a speciDc version number when upgradeOptions.setFCV Custom Resource option
was not updated to the new version

K8SPSMDB-485: Fixed TLS documentation that referenced incorrect Secrets names from the cr.yaml conDguration Dle

Deprecation and Removal

https://www.percona.com/doc/kubernetes-operator-for-psmongodb/index.html#installation
https://www.percona.com/doc/percona-distribution-for-mongodb/4.2/index.html
https://jira.percona.com/browse/K8SPSMDB-276
https://jira.percona.com/browse/K8SPSMDB-444
https://jira.percona.com/browse/K8SPSMDB-445
https://jira.percona.com/browse/K8SPSMDB-365
https://jira.percona.com/browse/K8SPSMDB-453
https://jira.percona.com/browse/K8SPSMDB-451
https://jira.percona.com/browse/K8SPSMDB-398
https://jira.percona.com/browse/K8SPSMDB-425
https://jira.percona.com/browse/K8SPSMDB-421
https://jira.percona.com/browse/K8SPSMDB-411
https://jira.percona.com/browse/K8SPSMDB-329
https://jira.percona.com/browse/K8SPSMDB-437
https://jira.percona.com/browse/K8SPSMDB-435
https://jira.percona.com/browse/K8SPSMDB-423
https://jira.percona.com/browse/K8SPSMDB-494
https://jira.percona.com/browse/K8SPSMDB-489
https://jira.percona.com/browse/K8SPSMDB-462
https://jira.percona.com/browse/K8SPSMDB-456
https://jira.percona.com/browse/K8SPSMDB-455
https://jira.percona.com/browse/K8SPSMDB-485

We are simplifying the way the user can customize MongoDB components such as mongod and mongos. It is now possible to set custom conDguration
through ConDgMaps and Secrets Kubernetes resources. The following options will be deprecated in Percona Distribution for MongoDB Operator v1.9.0+, and
completely removed in v1.12.0+:

sharding.mongos.auditLog.*

mongod.security.redactClientLogData

mongod.security.*

mongod.setParameter.*

mongod.storage.*

mongod.operationProfiling.mode

mongod.auditLog.*

The mongos.expose.enabled option has been completely removed from the Custom Resource as it was causing confusion for the users

Percona Kubernetes Operator for Percona Server for MongoDB 1.8.0

Date

May 6, 2021

Installation

Installing Percona Kubernetes Operator for Percona Server for MongoDB

Release Highlights

The support for Point-in-time recovery added in this release. Users can now recover to a speciDc date and time from operations logs stored on S3

It is now possible to perform a major version upgrade for MongoDB (for example, upgrade 4.2 version to 4.4) with no manual steps

New Features

K8SPSMDB-387: Add support for point-in-time recovery to recover to a speciDc date and time

K8SPSMDB-284: Add support for automated major version MongoDB upgrades

Improvements

K8SPSMDB-436: The imagePullPolicy option in the deploy/cr.yaml conDguration Dle now is applied to init container as well

K8SPSMDB-400: Simplify secret change logic to avoid Pod restarts when user changes the credentials

K8SPSMDB-381: Get credentials directly from Secrets instead of the environment variables when initializing the Replica Set

K8SPSMDB-352: Restrict running run less than 5 Pods of Replica Sets with enabled arbiter unless the allowUnsafeConfigurations option is set to true

K8SPSMDB-332: Restrict running less than 3 Pods of ConDg Servers unless the allowUnsafeConfigurations option is set to true

K8SPSMDB-331: Restrict running less than 3 mongos Pods unless the allowUnsafeConfigurations option is set to true

Bugs Fixed

K8SPSMDB-384: Fix a bug due to which mongos Pods were failing readiness probes for some period of time during the cluster initialization

K8SPSMDB-434: Fix a bug due to which nil pointer dereference error was occurring when switching the sharding.enabled option from false to true (thanks
to srteam2020 for contributing)

K8SPSMDB-430: Fix a bug due to which a stale apiserver could trigger undesired StatefulSet and PVC deletion when recreating the cluster with the same
name (thanks to srteam2020 for contributing)

K8SPSMDB-428: Fix a bug which caused mongos to fail in case of the empty name Deld in conDgsvrReplSet section of the Custom Resource

K8SPSMDB-418: Fix a bug due to which serviceAnnotations changes in the deploy/cr.yaml Dle were not applied to the running cluster

K8SPSMDB-364: Fix a bug where liveness probe of a mongo container was always failing if the userAdmin password contained special characters

K8SPSMDB-43: Fix a bug due to which renaming Replica Set in the Custom Resource caused creating new Replica Set without deleting the old one

https://www.percona.com/doc/kubernetes-operator-for-psmongodb/index.html#installation
https://jira.percona.com/browse/K8SPSMDB-387
https://jira.percona.com/browse/K8SPSMDB-284
https://jira.percona.com/browse/K8SPSMDB-436
https://jira.percona.com/browse/K8SPSMDB-400
https://jira.percona.com/browse/K8SPSMDB-381
https://jira.percona.com/browse/K8SPSMDB-352
https://jira.percona.com/browse/K8SPSMDB-332
https://jira.percona.com/browse/K8SPSMDB-331
https://jira.percona.com/browse/K8SPSMDB-384
https://jira.percona.com/browse/K8SPSMDB-434
https://jira.percona.com/browse/K8SPSMDB-430
https://jira.percona.com/browse/K8SPSMDB-428
https://jira.percona.com/browse/K8SPSMDB-418
https://jira.percona.com/browse/K8SPSMDB-364
https://jira.percona.com/browse/K8SPSMDB-43

Percona Kubernetes Operator for Percona Server for MongoDB 1.7.0

Date

March 8, 2021

Installation

Installing Percona Kubernetes Operator for Percona Server for MongoDB

Release Highlights

This release brings full support for the Percona Server for MongoDB Sharding. Sharding allows you to scale databases horizontally, distributing data across
multiple MongoDB Pods, and so it is extremely useful for large data sets. By default of the deploy/cr.yaml conDguration Dle contains only one replica set,
but when you turn sharding on, you can add more replica sets with different names to the replsets section.

It is now possible to clean up Persistent Volume Claims automatically after the cluster deletion event. This feature is off by default. Particularly it is useful to
avoid leftovers in testing environments, where the cluster can be re-created and deleted many times. Support for custom sidecar containers. The Operator
makes it possible now to deploy additional (sidecar) containers to the Pod. This feature can be useful to run debugging tools or some speciDc monitoring
solutions, etc. The sidecar container can be added to replsets, sharding.conDgsvrReplSet, and sharding.mongos sections of the deploy/cr.yaml
conDguration Dle.

New Features

K8SPSMDB-121: Add support for sharding to scale MongoDB cluster horizontally

K8SPSMDB-294: Support for custom sidecar container to extend the Operator capabilities

K8SPSMDB-260: Persistent Volume Claims can now be automatically removed after MongoDB cluster deletion

Improvements

K8SPSMDB-335: Operator can now automatically remove old backups from S3 if retention period is set

K8SPSMDB-330: Add support for runtimeClassName Kubernetes feature for selecting the container runtime

K8SPSMDB-306: It is now possible to explicitly set the version of MongoDB for newly provisioned clusters. Before that, all new clusters were started with the
latest MongoDB version if Version Service was enabled

K8SPSMDB-370: Fix confusing log messages about no backup / restore found which were caused by Percona Backup for MongoDB waiting for the backup
metadata

K8SPSMDB-342: MongoDB container liveness probe will now use TLS to follow best practices and remove noisy log messages from mongod log

Bugs Fixed

K8SPSMDB-346: Fix a bug which prevented adding/removing labels to Pods without downtime

K8SPSMDB-366: Fix a bug which prevented enabling Percona Monitoring and Management (PMM) due to incorrect request for the recommended PMM Client
image version to the Version Service

K8SPSMDB-402: running multiple replica sets without sharding enabled should be prohibited

K8SPSMDB-382: Fix a bug which caused mongos process to fail when using allowUnsafeConfigurations=true

K8SPSMDB-362: Fix a bug due to which changing secrets in a single-shard mode caused mongos Pods to fail

https://www.percona.com/doc/kubernetes-operator-for-psmongodb/index.html#installation
https://jira.percona.com/browse/K8SPSMDB-121
https://jira.percona.com/browse/K8SPSMDB-294
https://jira.percona.com/browse/K8SPSMDB-260
https://jira.percona.com/browse/K8SPSMDB-335
https://jira.percona.com/browse/K8SPSMDB-330
https://jira.percona.com/browse/K8SPSMDB-306
https://jira.percona.com/browse/K8SPSMDB-370
https://jira.percona.com/browse/K8SPSMDB-342
https://jira.percona.com/browse/K8SPSMDB-346
https://jira.percona.com/browse/K8SPSMDB-366
https://jira.percona.com/browse/K8SPSMDB-402
https://jira.percona.com/browse/K8SPSMDB-382
https://jira.percona.com/browse/K8SPSMDB-362

Percona Kubernetes Operator for Percona Server for MongoDB 1.6.0

Date

December 22, 2020

Installation

Installing Percona Kubernetes Operator for Percona Server for MongoDB

New Features

K8SPSMDB-273: Add support for mongos service to expose a single shard of a MongoDB cluster through one entry point instead of provisioning a load-
balancer per replica set node. In the following release, we will add support for multiple shards.

K8SPSMDB-282: O`cial support for Percona Monitoring and Management (PMM) v.2

Monitoring with PMM v.1 conDgured according to the uno`cial instruction will not work after the upgrade. Please switch to PMM v.2.

Improvements

K8SPSMDB-258: Add support for Percona Server for MongoDB version 4.4

K8SPSMDB-319: Show Endpoint in the kubectl get psmdb command output to connect to a MongoDB cluster easily

K8SPSMDB-257: Store the Operator version as a crVersion Deld in the deploy/cr.yaml conDguration Dle

K8SPSMDB-266: Use plain-text passwords instead of base64-encoded ones when creating System Users secrets for simplicity

Bugs Fixed

K8SPSMDB-268: Fix a bug affecting the support of TLS certiDcates issued by cert-manager , due to which proper rights were not set for the role-based
access control, and Kubernetes versions newer than 1.15 required other certiDcate issuing sources

K8SPSMDB-261: Fix a bug due to which cluster pause/resume functionality didn’t work in previous releases

K8SPSMDB-292: Fix a bug due to which not all clusters managed by the Operator were upgraded by the automatic update

Removal
The MMAPv1 storage engine is no longer supported for all MongoDB versions starting from this version of the Operator. MMAPv1 was already deprecated
by MongoDB for a long time. WiredTiger is the default storage engine since MongoDB 3.2, and MMAPv1 was completely removed in MongoDB 4.2.

Upgrade of the Operator from 1.5.0 to 1.6.0 will fail if MMAPv1 is used, but MongoDB cluster will continue to run. It is recommended to migrate your clusters to WiredTiger engine
before the upgrade.

Note

Note

https://www.percona.com/doc/kubernetes-operator-for-psmongodb/index.html#installation
https://jira.percona.com/browse/K8SPSMDB-273
https://jira.percona.com/browse/K8SPSMDB-282
https://www.percona.com/blog/2020/07/23/using-percona-kubernetes-operators-with-percona-monitoring-and-management/
https://jira.percona.com/browse/K8SPSMDB-258
https://jira.percona.com/browse/K8SPSMDB-319
https://jira.percona.com/browse/K8SPSMDB-257
https://jira.percona.com/browse/K8SPSMDB-266
https://jira.percona.com/browse/K8SPSMDB-268
https://github.com/jetstack/cert-manager
https://jira.percona.com/browse/K8SPSMDB-261
https://jira.percona.com/browse/K8SPSMDB-292
https://docs.mongodb.com/manual/core/storage-engines/

Percona Kubernetes Operator for Percona Server for MongoDB 1.5.0

Date

September 7, 2020

Installation

Installing Percona Kubernetes Operator for Percona Server for MongoDB

New Features

K8SPSMDB-233: Automatic management of system users for MongoDB on password rotation via Secret

K8SPSMDB-226: O`cial Helm chart for the Operator

K8SPSMDB-199: Support multiple PSMDB minor versions by the Operator

K8SPSMDB-198: Fully Automate Minor Version Updates (Smart Update)

Improvements

K8SPSMDB-192: The ability to set the mongod cursorTimeoutMillis parameter in YAML (Thanks to user xprt64 for the contribution)

K8SPSMDB-234: OpenShift 4.5 support

K8SPSMDB-197: Additional certiDcate SANs useful for reverse DNS lookups (Thanks to user phin1x for the contribution)

K8SPSMDB-190: Direct API quering with “curl” instead of using “kubectl” tool in scheduled backup jobs (Thanks to user phin1x for the contribution)

K8SPSMDB-133: A special Percona Server for MongoDB debug image which avoids restarting on fail and contains additional tools useful for debugging

CLOUD-556: Kubernetes 1.17 / Google Kubernetes Engine 1.17 support

Bugs Fixed

K8SPSMDB-213: Installation instruction not re_ecting recent changes in git tags (Thanks to user geraintj for reporting this issue)

K8SPSMDB-210: Backup documentation not re_ecting changes in Percona Backup for MongoDB

K8SPSMDB-180: Replset and cluster having “ready” status set before mongo initialization and replicasets conDguration Dnished

K8SPSMDB-179: The “error” cluster status instead of the “initializing” one during the replset initialization

CLOUD-531: Wrong usage of strings.TrimLeft when processing apiVersion

https://www.percona.com/doc/kubernetes-operator-for-psmongodb/index.html#installation
https://jira.percona.com/browse/K8SPSMDB-233
https://jira.percona.com/browse/K8SPSMDB-226
https://jira.percona.com/browse/K8SPSMDB-199
https://jira.percona.com/browse/K8SPSMDB-198
https://jira.percona.com/browse/K8SPSMDB-192
https://jira.percona.com/browse/K8SPSMDB-234
https://jira.percona.com/browse/K8SPSMDB-197
https://jira.percona.com/browse/K8SPSMDB-190
https://jira.percona.com/browse/K8SPSMDB-133
https://jira.percona.com/browse/CLOUD-556
https://jira.percona.com/browse/K8SPSMDB-213
https://jira.percona.com/browse/K8SPSMDB-210
https://jira.percona.com/browse/K8SPSMDB-180
https://jira.percona.com/browse/K8SPSMDB-179
https://jira.percona.com/browse/CLOUD-531

Percona Kubernetes Operator for Percona Server for MongoDB 1.4.0

Date

March 31, 2020

Installation

Installing Percona Kubernetes Operator for PSMDB

New Features

K8SPSMDB-89: Amazon Elastic Container Service for Kubernetes (EKS) was added to the list of the o`cially supported platforms

K8SPSMDB-113: Percona Server for MongoDB 4.2 is now supported

OpenShift Container Platform 4.3 is now supported

Improvements

K8SPSMDB-79: The health check algorithm improvements have increased the overall stability of the Operator

K8SPSMDB-176: The Operator was updated to use Percona Backup for MongoDB version 1.2

K8SPSMDB-153: Now the user can adjust securityContext, replacing the automatically generated securityContext with the customized one

K8SPSMDB-175: Operator now updates observedGeneration status message to allow better monitoring of the cluster rollout or backups/restore process

Bugs Fixed

K8SPSMDB-182: Setting the updateStrategy: OnDelete didn’t work if was not speciDed from scratch in CR

K8SPSMDB-174: The inability to update or delete existing CRD was possible because of too large records in etcd, resulting in “request is too large” errors. Only
20 last status changes are now stored in etcd to avoid this problem.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system .

https://www.percona.com/doc/kubernetes-operator-for-psmongodb/index.html#installation
https://jira.percona.com/browse/K8SPSMDB-89
https://jira.percona.com/browse/K8SPSMDB-113
https://jira.percona.com/browse/K8SPSMDB-79
https://jira.percona.com/browse/K8SPSMDB-176
https://jira.percona.com/browse/K8SPSMDB-153
https://jira.percona.com/browse/K8SPSMDB-175
https://jira.percona.com/browse/K8SPSMDB-182
https://jira.percona.com/browse/K8SPSMDB-174
https://jira.percona.com/secure/Dashboard.jspa

Percona Kubernetes Operator for Percona Server for MongoDB 1.3.0
Percona announces the Percona Kubernetes Operator for Percona Server for MongoDB 1.3.0 release on December 11, 2019. This release is now the current GA
release in the 1.3 series. Install the Kubernetes Operator for Percona Server for MongoDB by following the instructions.

The Operator simpliDes the deployment and management of the Percona Server for MongoDB in Kubernetes-based environments. It extends the Kubernetes
API with a new custom resource for deploying, conDguring and managing the application through the whole life cycle.

The Operator source code is available in our Github repository . All of Percona’s software is open-source and free.

New Features and Improvements

CLOUD-415: Non-default cluster domain can now be speciDed with the new ClusterServiceDNSSuffix Operator option.

CLOUD-395: The Percona Server for MongoDB images size decrease by 42% was achieved by removing unnecessary dependencies and modules to reduce
the cluster deployment time.

CLOUD-390: Helm chart for Percona Monitoring and Management (PMM) 2.0 have been provided.

Percona Server for MongoDB is an enhanced, open source and highly-scalable database that is a fully-compatible, drop-in replacement for
MongoDB Community Edition. It supports MongoDB protocols and drivers. Percona Server for MongoDB extends MongoDB Community Edition functionality by
including the Percona Memory Engine, as well as several enterprise-grade features. It requires no changes to MongoDB applications or code.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system .

https://www.percona.com/software/mongo-database/percona-server-for-mongodb
https://github.com/percona/percona-server-mongodb-operator
https://jira.percona.com/browse/CLOUD-415
https://jira.percona.com/browse/CLOUD-395
https://jira.percona.com/browse/CLOUD-390
https://www.percona.com/software/mongo-database/percona-server-for-mongodb
https://jira.percona.com/secure/Dashboard.jspa

Percona Kubernetes Operator for Percona Server for MongoDB 1.2.0
Percona announces the Percona Kubernetes Operator for Percona Server for MongoDB 1.2.0 release on September 20, 2019. This release is now the current GA
release in the 1.2 series. Install the Kubernetes Operator for Percona Server for MongoDB by following the instructions.

The Operator simpliDes the deployment and management of the Percona Server for MongoDB in Kubernetes-based environments. It extends the Kubernetes
API with a new custom resource for deploying, conDguring and managing the application through the whole life cycle.

The Operator source code is available in our Github repository . All of Percona’s software is open-source and free.

New Features and Improvements

A Service Broker was implemented for the Operator, allowing a user to deploy Percona XtraDB Cluster on the OpenShift Platform, conDguring it with a
standard GUI, following the Open Service Broker API.

Now the Operator supports Percona Monitoring and Management 2 , which means being able to detect and register to PMM Server of both 1.x and 2.0
versions.

Data-at-rest encryption is now enabled by default unless EnableEncryption=false is explicitly speciDed in the deploy/cr.yaml conDguration Dle.

Now it is possible to set the schedulerName option in the operator parameters. This allows using storage which depends on a custom scheduler, or a cloud
provider which optimizes scheduling to run workloads in a cost-effective way.

The resource constraint values were reDned for all containers to eliminate the possibility of an out of memory error.

Fixed Bugs

Oscillations of the cluster status between “initializing” and “ready” took place after an update.

The Operator was removing other cron jobs in case of the enabled backups without deDned tasks (contributed by Marcel Heers).

Percona Server for MongoDB is an enhanced, open source and highly-scalable database that is a fully-compatible, drop-in replacement for
MongoDB Community Edition. It supports MongoDB protocols and drivers. Percona Server for MongoDB extends MongoDB Community Edition functionality by
including the Percona Memory Engine, as well as several enterprise-grade features. It requires no changes to MongoDB applications or code.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system .

https://www.percona.com/software/mongo-database/percona-server-for-mongodb
https://github.com/percona/percona-server-mongodb-operator
https://docs.percona.com/percona-monitoring-and-management/2/index.html
https://github.com/mheers
https://www.percona.com/software/mongo-database/percona-server-for-mongodb
https://jira.percona.com/secure/Dashboard.jspa

Percona Kubernetes Operator for Percona Server for MongoDB 1.1.0
Percona announces the general availability of Percona Kubernetes Operator for Percona Server for MongoDB 1.1.0 on July 15, 2019. This release is now the
current GA release in the 1.1 series. Install the Kubernetes Operator for Percona Server for MongoDB by following the instructions. Please see the GA release
announcement .

The Operator simpliDes the deployment and management of the Percona Server for MongoDB in Kubernetes-based environments. It extends the Kubernetes
API with a new custom resource for deploying, conDguring and managing the application through the whole life cycle.

The Operator source code is available in our Github repository . All of Percona’s software is open-source and free.

New Features and Improvements

Now the Percona Kubernetes Operator allows upgrading Percona Server for MongoDB to newer versions, either in semi-automatic or in manual mode.

Also, two modes are implemented for updating the Percona Server for MongoDB mongod.conf conDguration Dle: in automatic conFguration update mode
Percona Server for MongoDB Pods are immediately re-created to populate changed options from the Operator YAML Dle, while in manual mode changes are
held until Percona Server for MongoDB Pods are re-created manually.

Percona Server for MongoDB data-at-rest encryption is now supported by the Operator to ensure that encrypted data Dles cannot be decrypted by anyone
except those with the decryption key.

A separate service account is now used by the Operator’s containers which need special privileges, and all other Pods run on default service account with
limited permissions.

User secrets are now generated automatically if don’t exist: this feature especially helps reduce work in repeated development environment testing and
reduces the chance of accidentally pushing predeDned development passwords to production environments.

The Operator is now able to generate TLS certiDcates itself which removes the need in manual certiDcate generation.

The list of o`cially supported platforms now includes the Minikube, which provides an easy way to test the Operator locally on your own machine before
deploying it on a cloud.

Also, Google Kubernetes Engine 1.14 and OpenShift Platform 4.1 are now supported.

Percona Server for MongoDB is an enhanced, open source and highly-scalable database that is a fully-compatible, drop-in replacement for
MongoDB Community Edition. It supports MongoDB protocols and drivers. Percona Server for MongoDB extends MongoDB Community Edition functionality by
including the Percona Memory Engine, as well as several enterprise-grade features. It requires no changes to MongoDB applications or code.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system .

https://www.percona.com/blog/2019/05/29/percona-kubernetes-operators/
https://www.percona.com/software/mongo-database/percona-server-for-mongodb
https://github.com/percona/percona-server-mongodb-operator
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/data_at_rest_encryption.html
https://www.percona.com/software/mongo-database/percona-server-for-mongodb
https://jira.percona.com/secure/Dashboard.jspa

Percona Kubernetes Operator for Percona Server for MongoDB 1.0.0
Percona announces the general availability of Percona Kubernetes Operator for Percona Server for MongoDB 1.0.0 on May 29, 2019. This release is now the
current GA release in the 1.0 series. Install the Kubernetes Operator for Percona Server for MongoDB by following the instructions. Please see the GA release
announcement . All of Percona’s software is open-source and free.

The Percona Kubernetes Operator for Percona Server for MongoDB automates the lifecycle of your Percona Server for MongoDB environment. The Operator can
be used to create a Percona Server for MongoDB replica set, or scale an existing replica set.

The Operator creates a Percona Server for MongoDB replica set with the needed settings and provides a consistent Percona Server for MongoDB instance. The
Percona Kubernetes Operators are based on best practices for conDguration and setup of the Percona Server for MongoDB.

The Kubernetes Operators provide a consistent way to package, deploy, manage, and perform a backup and a restore for a Kubernetes application. Operators
deliver automation advantages in cloud-native applications and may save time while providing a consistent environment.

The advantages are the following:

Deploy a Percona Server for MongoDB environment with no single point of failure and environment can span multiple availability zones (AZs).

Deployment takes about six minutes with the default conDguration.

Modify the Percona Server for MongoDB size parameter to add or remove Percona Server for MongoDB replica set members

Integrate with Percona Monitoring and Management (PMM) to seamlessly monitor your Percona Server for MongoDB

Automate backups or perform on-demand backups as needed with support for performing an automatic restore

Supports using Cloud storage with S3-compatible APIs for backups

Automate the recovery from failure of a Percona Server for MongoDB replica set member

TLS is enabled by default for replication and client tra`c using Cert-Manager

Access private registries to enhance security

Supports advanced Kubernetes features such as pod disruption budgets, node selector, constraints, tolerations, priority classes, and a`nity/anti-a`nity

You can use either PersistentVolumeClaims or local storage with hostPath to store your database

Supports a replica set Arbiter member

Supports Percona Server for MongoDB versions 3.6 and 4.0

Installation
Installation is performed by following the documentation installation instructions for Kubernetes and OpenShift.

https://www.percona.com/blog/2019/05/29/percona-kubernetes-operators/

